

Journal of Al Azhar University Engineering Sector

Vol. 13, No. 48, July 2018, 1042-1056

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR

FOR DIVERSIFIED ATTACKS

Hatem Salama
1
, Gouda Salama

1
, Khaled Badran

1
 and Mohamed Zaki

2

1
Military Technical College, Cairo, Egypt

2
Faculty of Engineer Al-Azhar Universty, Cairo, Egypt

ABSTRACT
In this paper as-Application Needs MANET Simulator (ANMS) is presented as a novel
unique simulator that can simulate equally the two attack types. The underlying simulator
consists of two levels, one for each attack type. ANMS is two-fold to cover MANET
diversified attacks and it has been built up using a Unified Modeling Language (UML). Its
construction starts by emphasizing the use cases [i.e. the sequential relation between the
server data and the clients broadcast]. Consequently, the class diagram is built up. Each class
contains its public, private member and methods, while the relations between classes express
their message handling. Eventually ANMS is coded and developed. ANMS works by feeding
it by MANET-under-consideration. Then the first part that embeds the Byzantine oriented
consensus simulation shows whether there is a Byzantine attack. If no Byzantine attacks it
announces success otherwise it announces suspected. The suspected cases are categorized to
false failure, true failure or attack/malicious. The last cases are examined using the second
part of ANMS (typical intrusions part) to classify the underlying attack. ANMS is subject to
tremendous amount of tests. Those tests include performance evaluation, comparisons and
confusion matrix. The experimental performance of ANMS confirms the fact that, it is really
needed for MANETs administration and their security measurements.

Keywords: Byzantine Attack, Consensus Algorithm, MANET Attacks, Use Cases, Class
 Diagram, Decision Tree

1. INTRODUCTION
In MANET’s [1-2] laptops, PCs, cellular phones, appliances with ad-hoc communication
capability link together on the fly to create a network [3]. This technology is the key to
solving today’s most common communication problems such as having a fixed infrastructure,
and centralized, organized connectivity, etc. MANET is a self-configuring network of mobile
routers and associated hosts connected by wireless links. The routers (mobile devices, nodes)
are free to move randomly and organize themselves arbitrarily. Thus, the network’s wireless
topology may change rapidly and unpredictably. In the network data moves from hop to hop
till it reaches its destination. In addition the network updates and reconfigures itself to keep
nodes connected. The network topology changes when a node joins in or moves out. Packet
forwarding, routing, and other network operations are carried out by the individual nodes
themselves [3]. Moreover, in MANETs, where each node is acting as a router with
dynamically changing topology, the availability is not always guaranteed [4]. It is also not
guaranteed that the path between two nodes would be free of malicious nodes (intruder nodes)
[3]. The wireless links between nodes are highly susceptible to link attacks (passive
eavesdropping, active interfering, etc) [5].

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

A mobile ad-hoc network by its nature is subject to many diversified attacks. Those
attacks can be broadly classified into two categories: 1) Network intrusions and 2) Byzantine
oriented attacks [7-8-9]. The first category contains typical MANET attacks [10] such as DoS,
Drop attack and worm-hole. Byzantine oriented attacks mean that the compromised node can
generate arbitrary data to pretend its real behavior. It is clear that each type of these attacks
has its own inherent features. Accordingly, every type needs a corresponding simulator. Thus,
there are no simulators that can simulate both types (typical intrusions and Byzantine attacks).
Therefore, MANET [11] administrators are in real need to simulate both types. From this
point ANMS gains its significance as a simulator that integrates in homogeneous and
seamless manner two levels to model either Byzantine or non-Byzantine (network intrusion)
attacks.

ANMS adopts a novel approach for dealing with the two attack types. The underlying
network is presented to simulator that consists of two levels, as shown in Figure (1).
Throughout its first level it can decide whether or not there exist any malicious conditions. If
there is not (success) the administrator will guarantee that his network is normally operating.
Otherwise, ANMS announces suspicion. Such suspicion implies false failure, true failure and
attack/malicious.

The second level of ANMS is a classifier that classifies the network conditions as false
failure, true failure or attack/malicious. In this paper, the main concern is to investigate the
design approach that has been employed using UML. The design process begins by starting
the network use cases. Accordingly the UML class diagram is laid out, from which ANMS
code is developed and heavily tested. Such tests confirm:

i. Crossing the gap that exists between typical simulators (eg. NS3, Glomosim,
Omnet++) [12] and MANET Byzantine consensus (eg. Tangaroa [13], Turquois
[14], BFT-CUP [15] , GCAP [16]).

ii. The unique capabilities of the simulator are handling both 1) Typical intrusion and
2) Byzantine oriented attack.

iii. The superiority of ANMS performance.
This paper is organized as follows. Section 2 discusses the related work while section 3 is

an elaboration of the design methodology that starts with use cases and consequently the class
diagram is given. Section 4 emphasize ANMS performance and investigates its capabilities.
Section 5 is the paper conclusion.

In the introduction? Must be replaced

First Level

Second Level

Correct

Byzantine Protocol

Suspected (Data of suspected replica)

End Intermediate Program

Features

Decision Tree Algorithm

Decision

MANET Behavior

Figure (1): The simulator two levels

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

2. RELATED WORK

There are many different network simulators available [17], it is extremely difficult to
choose an appropriate tool for performance testing without the complete analysis of existing
tools

 Investigating MANETs is achievable by resorting either to software-based simulators or
to experimentation networks (test-beds). Most researchers favor simulators as the expense of
test-beds. What prevent (or at least hinder) the use of real-size test-beds are their cost and
their inherent lack of flexibility [12].

This becomes particularly impeding as the size of the experimented network grows.
Software-based simulation then turns out to be a viable alternative and a widely used solution

Test-beds suffer from several drawbacks. More precisely, the cost of the hardware (one
node is several hundred euros) coupled with the difficulty of managing applications in terms
of deployment, monitoring, etc. over such test-beds makes that only a few test-beds could be
built up to now.

Because of the complex nature of the MANETs, their simulation is a very challenging
issue. Simulators rely on various techniques for improving their accuracy, speed, scalability,
usability, etc. Examples of these simulators are:

i. NS-2: It is an open source simulator for wired, wireless, Ad-Hoc and sensor networks.
ii. OMNET++: It is an open source program that simulates discrete events for wired,

wireless, Ad-Hoc and sensor networks.
iii. Glomosim: It is an open source and simulates wired, wireless, Ad-Hoc and sensor

networks.
For these simulators it is difficult to model the malicious conditions of different attacks,

since such attacks are executed throughout unknown procedures.
Geetha et al [8] have proposed security measures to mitigate MANET Byzantine attacks

[18-19-20]. In their paper, they claimed that they can provide tools against both Byzantine
and non-Byzantine attacks. However they relied on an oversimplified approach in which they
considered that the node which can send arbitrary messages to other network nodes is
Byzantine. Thus, they ignored entirely the Byzantine consensus [21] which guarantees the
safety of the network servers.

3. DESIGN AND DEVELOPMENT OF ANMS

Here, UML is used as a de facto design approach in software engineering, therefore
we begin with elaborating ANMS use cases.

3.1 Use cases

The use cases provide a clear relation between ANMS and the corresponding actors.
Moreover, the sequence diagrams of different attacks are demonstrated. Those diagrams
are represented from the victim view point while the attacker view point, that has been
discussed in [22], is ignored. Such use cases are classified to Byzantine oriented and non-
Byzantine cases (attacks), however, ANMS starts by accomplishing leader selection.

3.1.1 Leader Selection

The MANET nodes are moving randomly at random distances that are calculated at
each term (time interval). If the distance between any two nodes is increased over a
particular maximum allowed distance then no connection can be established even the
two nodes are not faulty. Thus, in MANETs, by their nature, every node will be
connected by a connection or more to other nodes. The system counts and records these
connections for each node. On the basis of the node mobility network groups (i.e. two
nodes or more) may be formed. For a not faulty node in a group with maximum number
of connections it might be selected as a leader for this group. In Figure (2) clarifies the
groups and the leaders, as in the figure we have two groups G1 and G2, node 1 is the
leader of group G1 and node 9 is the leader of G2. Leaders nodes are 1, 9. Such

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

leader(s) is assumed to be connected to the server cluster, and communicated with it to
obtain the current data.

3.1.2 Byzantine oriented Attack

A Byzantine attack means that a compromised node may act as a leader that can
receive the current data from the cluster server and send arbitrary messages to other
nodes. For clarification the following illustrative cases are considered:

1- Normal case i.e. neither failure nor attack.
2- True failure because of node inability to send
3- True failure because of node inability to receive
4- True failure because of node inability to receive but the following nodes are

aware with the current data
5- True failure because of node inability to send but the following nodes are

aware with the current data
In the first case we assume all nodes are up and running and node1 is acting as a

leader. It can receive the current data from the cluster server. That node has four
connections (to deserve leadership) and it sends the new messages to all its connected
nodes as shown in Figure (3a). Consequently, its connected nodes are aware and can
send the new messages to their descendent nodes.

In the second case we have node 1 is a leader with high count of 3 connections and
node 2 received the new messages to send them to node 3 which has a problem in
sending. Consequently the last node cannot send the new messages to node 4. Then,
node 4 has the old messages which means that is not aware with the up to date messages
and this corrupts the data consistency in the descendent nodes as shown in Figure (3b).

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

 Figure (3): Sequence diagram of Byzantine cases

a Normal case i.e. neither failure nor attack

b True failure because of node inability to send

c True failure because of node inability to receive

d True failure because of node inability to receive but the following nodes are aware with the current data
e True failure because of node inability to send but the following nodes are aware with the current data

c

d

e

(a)

(b)

(c)

(d)

(e)

Node 2 Node 3 Node 4

ErrSen
d
N = 2
aware

Norma
l
N = 1
OldMs
g

Norma
l
N = 2
aware

Case number 2 all nodes are
normal but node
3(AntSendError)
all nodes are aware with data
but node 4

New
msg

Leader
Norma
l
N = 3
aware

New
msg

Get data from
the cluster
server

Node 1
Leader

New
msg

No msg

Node 2 Node 3 Node 4

Norma
l
N = 2
OldMs
g

Norma
l
N = 1
OldMs
g

ErrRcv
N = 2
OldMs
g

Case number 3 all nodes are
normal but node
2(AntRecvError)
And only node 1 is aware with
data

New
msg

Leader
Norma
l
N = 3
aware

Old
msg

Get data from
the cluster
server

Node 1
Leader

New
msg

Old
msg

Norma
l
N = 3
aware

Norma
l
N = 1
aware

ErrRcv
N = 2
aware

Case number 4 all nodes are
normal but node
2(AntRecvError)
and all nodes are aware with
data but node 2

New
msg

New
msg

Leader
Norma
l
N = 4
aware

Old
msg

Node 2

Get data from
the cluster
server

Node 1
Leader

New
msg

New
msg

Node 3 Node 4

Norma
l
N = 3
aware

Norma
l
N = 1
aware

Norma
l
N = 2
aware

Case number 1 all nodes are
normal and aware with data New

msg

New
msg

Leader
Norma
l
N = 4
aware

New
msg

Node 2

Get data from
the cluster
server

Node 1
Leader

New
msg

New
msg

Node 3 Node 4

Norma
l
N = 3
aware

Norma
l
N = 1
aware

ErrSen
d
N = 2
aware

Case number 5 all nodes are
normal but node
2(AntSendError)
and all nodes are aware with
data but node 2

New
msg

New
msg

Leader
Norma
l
N = 4
aware

No msg

Node 2

Get data from
the cluster
server

Node 1
Leader

New
msg

New
msg

Node 3 Node 4

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

In the third case we have node 1 is a leader with high count of 3 connections and node 2
cannot receive the new messages because it has a problem in receiving, so it sends the
old messages. Consequently, nodes 3 and 4 have the old messages which mean that
those nodes are not aware with the up to date messages as shown in
Figure (3c).

In the fourth case node 1 is the leader with high count of 4 connections and node 2
cannot receive the new messages because it has a problem in receiving, so node 2 sends
the old messages to node 3, but node 1 has a connection with node 3 and sends the new
messages to it. Consequently node 3 becomes aware and sends the new messages to the
descendent nodes as shown in Figure (3d).

In the fifth case node 1 is the leader with high count of 4 connections and node 2
can receive the new messages but it cannot send them to node 3 because it has a
problem in sending, but node 1 has a connection with node 3 and sends the new
messages to it. Consequently node 3 becomes aware and sends the new messages to the
descendent nodes as shown in Figure (3e).

3.1.3 Intrusion Attack

A major strength for ANMS is its capability to simulate typical intrusion attacks,
also. In what follows we explain 4 attack cases, as shown in Figure (4).

For clarification the following illustrative cases are considered:
1- DoS attack.
2- Overflow sending causes Drop attack
3- Node under Noise attack
4- Jamming attack to all the nodes

In the first case, node 1 is the leader. It sends the new message to its connected
nodes (e.g. node 2). However, node 2 is so aggressive that it sends over-flow messages
to his descendent nodes (e.g. node 3). Thus, node 3 becomes aware but cannot pass the
message to the next level nodes because of the DoS flooding, as shown in Figure (4a).
Consequently, nodes 4 and 5 are not aware and they are carrying only the old messages.

In the second case node 2 also has the over-sending problem, but it continues to
send to itself, which affects the process of passing new messages. Then, node 3 suffers
from a drop attack as shown in as shown in Figure (4b). Consequently, nodes 3,4 and 5
are not aware with new messages.

In the third case node 3 is under noise attack, so the node cannot receive or send any
messages, which means that it looks like a hole. Consequently, nodes 4 and 5 are not
aware with new messages as shown in Figure (4c).

In the fourth case all nodes are under noise attack (all nodes cannot send or receive),
this case called a Jamming attack on all the nodes. Really there is no leader as shown in
Figure (4d).

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

Figure (4): Sequence diagram of Intrusion cases

a DoS attack.

b Overflow sending causes Drop attack
c Node under Noise attack

d Jamming attack to all the nodes

Old msg

Old msg

(a)

(b)

(c)

(d)

Get data from
the cluster
server

Node 2 Node 3 Node 4

Normal
N = 2
aware

Normal
N = 1
OldMsg

OverSnd
N = 2
aware

Case number 1
DoS Attack on node 3 by node
2(OverheadSending)
All nodes are normal but node
2(OverheadSending)
Only nodes 1,2,3 aware with data

New msg

Leader
Normal
N = 3
aware

New msg N times

Node 1
Leader

New msg

Cannot send msg

Node 5

Normal
N = 1
OldMsg

DoS

Cannot Send
Msg

New msg

Get data from
the cluster
server

Node 2 Node 3 Node 4

Normal
N = 2
Aware

NoiseAtt
N = 2
OldMsg

Normal
N = 2
aware

Case number 3
Noise Attack by node 4
(NoiseAttac)
All nodes are normal but node
4(NoiseAttac)
Only nodes 1,2,3 aware with data

New msg

Leader
Normal
N = 3
aware

New msg

Node 1
Leader

New msg

Node 4 (Cannot Recv)

Node 5

Normal
N = 1
OldMsg

Noise Attack

Cannot send
Cannot Recv

Get data from
the cluster
server

Node 2 Node 3 Node 4

Normal
N = 2
OldMsg

Normal
N = 2
OldMsg

Normal
N = 2
OldMsg

Case number 4
Jamming Attack for all nodes
All nodes are normal but they
cannot send or receive
All nodes are not aware with new
data

Cannot send
Cannot Recv

Leader
Normal
N = 3
aware

Cannot send
Cannot Recv

Node 1
Leader

New msg

Cannot send
Cannot Recv

Node 5

Normal
N = 1
OldMsg

Jamming Attack

Get data from
the cluster
server

Node 2 Node 3 Node 4

Normal
N = 2
OldMsg

Normal
N = 1
OldMsg

SelfSend
N = 2
aware

Case number 2
Drop Attack by node 2(DropAttac)
All nodes are normal but node
2(DropAttac)
Only nodes 1,2 aware with data

New msg

Leader
Normal
N = 3
aware

Cannot send msg

Node 1
Leader

New msg

Old msg

Node 5

Normal
N = 1
OldMsg

Drop Attack

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

3.2 Class Diagram
Here, the class diagram provides a static view for ANMS, where each class consists

of: 1) Class name, 2) Attributes and 3) Methods. The attributes and methods may be
either public or private. The classes, as such, are based on the use cases of section 3.1.

In Figure (5) each node has its location that determines the possible connections
with other nodes. Location also may be in obstacle area which causes the ban of
connection with the other nodes outside this obstacle area. Normal nodes are the nodes
which have no malfunctioned conditions, not in obstacle area, not under attack and not
compromised, otherwise the node is abnormal. As shown in Figure (3), the root is the
class node and its private attributes (written in Latin) are: XPos, YPos, Isleader,
canSend = true, canReceive = true and it contains one method only; createNode(). The
class location is associated with the class node. Its public methods are getX() and getY()
while it has no attributes. Such node class has two children, namely, normal node and
abnormal node. Here, we are concerned only with abnormal nodes that are allocated on
two levels: Typical intrusion and Byzantine oriented, as shown in Figure (5). Noise
class is a subclass of node with private attributes: isNoisy = true, canSend = false and
canReceive = false. However, for that class we don’t care about the values of other node
attributes. Jamming class is a subclass of node with private attributes: isJamming = true,
isNoisy = true, canSend = false and canReceive = false. When Jamming is applied all
ANMS nodes are faulty. Overflow class is a subclass of node with private attributes:
isOverFlow = true, canSend = true and canReceive = true, that class send the message N
times which affect the receiving nodes under type of DoS because it cannot send any
message while DoS class exhausts his connecting bandwidth in replying to its sender
then it cannot send the message to its receiving class.
The Byzantine oriented classes are Obstacle Area, Antenna Error, Zero Connections.
The Antenna error only is considered as example (case) in use cases. The obstacle area
class contains inObstacleArea = true. Thus, that class can only communicate with nodes
that exist in the obstacle area. The Zero connection class contains connectionCount = 0,
which means that the underlying class is either in the obstacle area lonely or
connectionless.

7

3.3 ANMS Functionality

ANMS starts from its main in which the maneuvering area, number of nodes, and
the parameters of the obstacle area and the number of terms are initially determined.
The system works iteratively in loops. In each loop the program runs the relevant
methods the first method to be executed is setLocation() which is responsible for

Node

Normal Node Abnormal

Node

Lead

er

Send Recei

ve

Location

Typical Intrusion

Byzantine

oriented

Noise Jamming

DoS

Obstacle

Area

Zero
Connections

Overflow

Antenna

Error

Figure (5): Class diagram of ANMS

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

changing all nodes locations randomly assuming that all MANET nodes should be in
the underlying area. The nodes locations are changed every term as long as such nodes
are not stopped. Accordingly, the method of setNodesDistances() compute the distances
between every pair of nodes. As long as the distance is less than a predefined threshold
the connection between and two nodes can be determined using the method
setNodesConnections(). When a node has no connections then, its attribute
isZeroConnection = true. Class setConditions() contains the methods that choose nodes,
condition and number of terms (life of this condition), all are reset randomly. The
pseudo-code is emphasized in Appendix A. It contains five methods in addition to the
main().

4. Implementation and Performance Evaluation
The implantation of ANMS is taken place experimentally and its performance is

evaluated and compared with other similar products. In fact the performance evaluation is
carried out on two levels, the first (high) one is concerned with the Byzantine consensus
while the second (low) level is interested in defending typical intrusions, as shown in
Figure (1) .

4.1 Performance of First Level

The first level utilizes and simulates the ideas of Raft [23] to solve the Byzantine
consensus problem that may be raised between ANMS servers. Accordingly, a strong
leader is employed. Thus, log entries only flow from the leader to other servers. This
simplifies the management of the replicated log and makes ANMS easier to understand.
Moreover Raft, consequently, ANMS uses randomized timers to elect leaders. This adds
only a small amount of mechanism to the heartbeats already required for any consensus
algorithm, to solve conflicts simply and rapidly. The main characteristics of that level
are pointed out for 10000 Operational Cases (OC) in
Table (1). In this table 5035 OCs suffer neither Byzantine disagreement nor malicious
attack, while 1901 are suspected, false failure OCs but actually they are not attacks,
according to the classification of the second level (section 4.2). Moreover, 2131 OCs are
true failure but the second level indicates that they are not attacks. The rest of the table
emphasizes typical client intrusions.

 Table (1) Performance of ANMS two levels

Operational Cases (OC) Count of OC Ratio

Level 1 results Level 2 results

Is-Suspected Is-Attack

Normal 5035 50.3% No No

False Failure 1901 19% Yes No

True Failure 2131 21.3% Yes No

Jamming 178 1.8% Yes Yes

Noise 23 0.2% Yes Yes

Drop 555 5.6% Yes Yes

DoS 177 1.8% Yes Yes

4.2 Performance of Second Level
The second level performs intrusion detection in MANETs using a decision tree

classifier which is based on C4.5 algorithm. Upon prototyping ANMS that tree can be
obtained and illustrated in appendix B. Also the corresponding classifier performance is
pointed out, Table (2). In this table the true positive, TP-rate, false positive, FP-rate,
precision, recall and F-measure are recorded. In addition the corresponding confusion
matrix is illustrated in Table (3). These metrics are defined by the following equations.

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

Accuracy = (TP + TN) /(TP + FP + FN + TN)

 (1)
Precision = (TP)/(TP + FP)

 (2)
Recall =(TP) /(TP + FN)

 (3)
True Negative Rate = (TN) / (TN + FP)

 (4)
True positive rate TPR = TP / (TP + FN)

 (5)
True Negative rate TNR = TN /(TN +FP)

 (6)
F-Measure = 2TP /(2TP + FP + FN)

 (7)
Where,
TP : True detected attack
TN : True detected non attack
FP : Non attack detected as attack
FN : Attack detected as non-attack

The classifier has a structure of pruned binary tree that utilizes C4.5 algorithm [24].

This tree -structured classifier is attractive because of the fact that the most informative
nodes are the nearest to the root.

Table (2) Decision tree parameters

Class
TP-
Rate

FP-
Rate

Precision Recall
F-

Measure

False Failure 0.97 0.056 0.945 0.97 0.957

True Failure 0.912 0.009 0.983 0.912 0.946

Jamming 0.974 0 0.957 0.974 0.966
Noise 0.784 0 0.978 0.784 0.871

Drop 0.987 0.01 0.899 0.987 0.941

DoS
0.956 0.007 0.852 0.956 0.901

Table (3) Confusion matrix of the decision tree

Class
False

Failure

True

Failure
Jamming Noise Drop DoS

False Failure 13930 151 0 0 135 140

True Failure 722 9582 10 2 137 57

Jamming 0 6 224 0 0 0

Noise 14 3 0 91 5 3

Drop 27 5 0 0 2456 0

DoS 51 2 0 0 0 1152

4.3 Comparative Study

There is no one product that can be compared with the two levels of ANMS.
Therefore, two products are chosen for comparison, where every single product is
compared to its corresponding level. The first level is compared with Turquois [14].
Such comparison is pointed out in Table (4) for a MANET with n-nodes from which
f nodes may fail.

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

Figure (6): Accuracy comparison

Table (4) ANMS Comparative Study

Aspect of comparison Turquois ANMS

Theoretical foundation Basics of Byzantine

general problem

Raft based with extensions

for MANETs

Scope of applicability Immune for Byzantine

attacks

Immune for general

MANET attacks

Allowed failed nodes Failure of f < n/3 and

momentary break down

communications

Failure of f < n/3 and

momentary break down

Differentiation between

accidental and malicious

failure

Partial differentiation Complete differentiation by

making use of suspected

cases

Intrusion tolerant Yes Yes

Energy saving By efficient utilization of

the broadcasting media

By handling the

attacks/failures on two

levels

Combination of Byzantine

and dynamic Omission

faults

Yes Yes

Inexpensive hashing For authentication instead

of public key cryptography

Incremental hashing to

ensure integrity
The second level, as shown in Figure (1), is compared with [25] that can investigate the
process of intrusion detection in MANET using classification algorithm. Figures (6)
shows the performance of ANMS C4.5 decision tree classifier relative to the Gaussian
Mixture Model (GMM), the naïve Bayes model and the Support Vector Machine
(SVM) model and the Multi-Layer Perceptron (MLP) algorithms [25].

5. CONCLUSION
This paper presents ANMS as a MANET-under-attack simulator. For such simulator the
attacks are broadly categorized into two categories, namely, Byzantine attacks and typical
MANET intrusions. Accordingly, ANMS has been built up on two levels. The first (high)
level mitigates the Byzantine attacks. It makes use of solving the Byzantine consensus
problem to guarantee that all the network servers are running in non-faulty conditions i.e. the
unknown nodes are not malicious this level of the simulator has the advantage that it is Raft
based and it takes into account the structure-less ad-hoc operational conditions. The second

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

(low) level is devoted to detect the typical MANET intrusions using a decision tree classifier
which utilizes C4.5 algorithm to determine the intrusion class.

As a software product ANMS is designed using the de-facto UML approach.
Consequently the use cases and their corresponding sequence diagram are investigated. Next,
the class diagram is given and utilized to develop the ANMS code.

The fact that ANMS crosses the gap between Byzantine and non-Byzantine attack
simulators has been confirmed throughout its prototyping. Therefore, ANMS can be used with
the following essential advantages.

1 - It is based on a sound theoretical foundation for solving the Byzantine general
problem. Consequently the success of the system servers ensures that they are free
of any malicious attack.

2 - It reduces the number of faulty operations by passing them from the first level to
the second one, thus decreasing the false alarms.

3 - It is suitable for source constrained MANETs as it saves energy by reducing the
number of faults to be processed.

4 - It takes into consideration the unreliable communications between MANET nodes
by providing messages repetition.

Appendix A
Pseudo Code of ANMS

ANMS code consists of a main() and five methods. In the main() we set conditions,

locations, distance, connections and decisions. Also it increments the terms (time intervals).

Main(){
 Create networkNodes at location(x,y)
 Number of terms = nTerms

Number of nodes = nNodes
 Define the maneuvering area: A
 Define the obstacle area: Obs ⸦ A

 While terms <= nTerms {

If Terms / Interval = 0,
 setConditions of nodes

setLocation of nodes

 setNodesDistances of nodes
 setNodesConnections of nodes
 setDecision of nodes
 Terms ++

}
}
setConditions (nodes){ // Method for setting random conditions
 For i =1 to nNodes{
 ii = rand (nNodes)
 If AntSendErr[ii] = 0 then AntSendErr[ii] = rand(xTerms)

ii = rand (nNodes)
 If AntRcvErr[ii] = 0 then AntRcvErr [ii] = rand(xTerms)

ii = rand (xNodes)
 If CanNotSendErr[ii] = 0 then CanNotSendErr[ii] = rand(xTerms)
 If CanNotRecvErr[ii] = 0 then CanNotRecvErr[ii] = rand(xTerms)
 }
}
setLocation(nodes){
 For i = 1 to nNodes{
 Nodes[i].x = Nodes[i].x + rand(displacement)*random(direction)
 Nodes[i].y = Nodes[i].y + rand(displacement)*random(direction)
 If Nodes[i] not in A then repeat till be in A
 Else If Nodes[i] Obs, nodes[i].obstacle = true

}
}
setNodesDistances(nodes){
 For i = 1 to nNodes{
 For ii = 1 to nNodes{
 nodesDistances[i,ii], // Calculate distances between nodes
 }

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

 }
}
setNodesConnections (nodes[n]){
 For i = 1 to nNodes{
 For ii = 1 to nNodes{
 If nodesDistances[i,ii] < distanceThreshould, nodesConnection[i,ii] = true
 Else nodesConnection[i,ii] = false
 }
 }
}
SetNodesDecision(nodes){
 -- Depending of the conditions decision will be one of the next (false failure, true failure, DoS, Drop, …
 If nodes[i].obstacle = true number of terms < termThreshold, false failure
 Else if nodes[i].obstacle = true number of terms > termThreshold, true failure
 If AntSendErr[i] number of terms < termThreshold, false failure

Else if number of terms > termThreshold, true failure
If CanNotSendErr [i] > 0 && CanNotRecvErr[i] >0, noise
…………

}

Appendix B

Decision Pruned Tree
That pruned tree acts as classifier which has been implemented using WEKA [26].

Because of the number of the available examples is not large enough a 10-fold cross
validation is employed.
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

traficdrop <= 0

| traficoverflow <= 0

| | obs_area <= 0

| | | zeroconcections <= 0

| | | | canRecv <= 0

| | | | | canSend <= 0: 2 (7902.0)

| | | | | canSend > 0: 4 (185.0/8.0)

| | | | canRecv > 0

| | | | | antsendsw_fail <= 0: 5 (84.0)

| | | | | antsendsw_fail > 0: 2 (2.0)

| | | zeroconcections > 0

| | | | antrecvhw_fail <= 0

| | | | | antsendhw_fail <= 0

| | | | | | antrecvsw_fail <= 0

| | | | | | | antsendbattery_fail <= 0

| | | | | | | | antrecvbattery_fail <= 0

| | | | | | | | | antsendsw_fail <= 0

| | | | | | | | | | canSend <= 0: 1 (3482.0/7.0)

| | | | | | | | | | canSend > 0: 4 (37.0)

| | | | | | | | | antsendsw_fail > 0: 2 (163.0)

| | | | | | | | antrecvbattery_fail > 0: 2 (177.0/2.0)

| | | | | | | antsendbattery_fail > 0: 2 (186.0)

| | | | | | antrecvsw_fail > 0: 2 (227.0/3.0)

| | | | | antsendhw_fail > 0: 2 (260.0)

| | | | antrecvhw_fail > 0: 2 (311.0)

| | obs_area > 0

| | | antsendbattery_fail <= 0

| | | | antrecvsw_fail <= 0

| | | | | antsendhw_fail <= 0: 1 (9551.0/368.0)

| | | | | antsendhw_fail > 0

| | | | | | antrecvhw_fail <= 0

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

| | | | | | | antrecvbattery_fail <= 0

| | | | | | | | antsendsw_fail <= 0: 1 (401.0/118.0)

| | | | | | | | antsendsw_fail > 0: 2 (11.0/1.0)

| | | | | | | antrecvbattery_fail > 0: 1 (24.0)

| | | | | | antrecvhw_fail > 0: 2 (43.0/1.0)

| | | | antrecvsw_fail > 0

| | | | | antrecvbattery_fail <= 0

| | | | | | antsendhw_fail <= 0

| | | | | | | antrecvhw_fail <= 0

| | | | | | | | zeroconcections <= 0: 2 (266.0/119.0)

| | | | | | | | zeroconcections > 0: 1 (86.0/33.0)

| | | | | | | antrecvhw_fail > 0

| | | | | | | | zeroconcections <= 0: 1 (79.0/27.0)

| | | | | | | | zeroconcections > 0: 2 (6.0/2.0)

| | | | | | antsendhw_fail > 0: 1 (108.0/10.0)

| | | | | antrecvbattery_fail > 0: 1 (46.0)

| | | antsendbattery_fail > 0

REFERENCES
[1] M.Dahiya, “MANET’s: Security Attacks and Securing Routing Protocols”,

Advances in Wireless and Mobile Communications Volume 10, Number 4, 2017,
pp.693-697.

[2] S.Singh and R.Singh, “A Review on Detection and Isolation of Selective Packet
Drop Attack in MANET”, IJCSN International Journal of Computer Science and
Network, Volume 6, Issue 3, June 2017, pp.395-399.

[3] A. Mishra, and K. Nadkarni, “Security in MANETs”, The handbook of wireless
Ad-Hoc networks, 2002.

[4] L. Ertau, D. Ibrahim, “Evaluation of Secure Routing Protocols in Mobile Ad Hoc
Networks (MANETs)”, California State University USA, 2004 .

[5] G.Santos and M.Correia , "Efficient Byzantine Fault-Tolerance", IEEE
Transactions on Computers, VOL. 62, NO. 1, Jan 2013.

[6] V. Athira, G. Jisha, "Network Layer Attacks and Protection in MANETA
Survey", (IJCSIT) International Journal of Computer Science and Information
Technologies, Vol. 5 (3) ,2014.

[7] N.Agrawal and K.Kumar, N.Joshi, “Performance evaluation of byzantine rushing
attack in ad-hoc network”, International Journal of Computer Applications (0975
– 8887) Volume 123 – No.6, Aug 2015.

[8] A. Geetha, N. Sreenath, "Byzantine Attacks and its Security Measures in Mobile
Ad-hoc Networks", Int'l Journal of Computing, Communications &
Instrumentation Engg. (IJCCIE) Vol. 3, Issue 1,2016.

[9] C.Guntewar and V.Sahare, “A Review on Byzantine Attack Detection and
Prevention Using Game Theory”, (IJCSIT) International Journal of Computer
Science and Information Technologies, Vol. 6 (1) , 2015, pp. 749-752.

[10] S. Sevil, C. John Andrew, "Intrusion Detection in Mobile Ad Hoc Networks",
Guide to Wireless Ad Hoc Networks, Computer Communications and Networks,
2009.

[11] R.Sivakami, G.Kadhar, " A radical block byzantine attacks in mobile ad-hoc
network ", Wireless Personal Communications: An International Journal archive
Volume 87 Issue 2, March 2016, pp. 485-497.

[12] L Hogie, P. Bouvry, F. Guinand, "An Overview of MANETs Simulation", 2005,
URL www.elsevier.nl/locate/entcs .

[13] C.Copeland and H. Zhong, "Tangaroa: a Byzantine Fault Tolerant Raft", 2013,
[14] H.Moniz, N. Ferreira Neves, and M. Correia, "Turquois: Byzantine Consensus in

Wireless Ad-Hoc Networks", University of Lisboa Portugal, 2009.

ANMS: DESIGN AND EVALUATION OF A MANET SIMULATOR FOR DIVERSIFIED ATTACKS

[15] A.Eduardo, P.Alchieri and others, "Byzantine Consensus with Unknown
Participants", OPODIS 2008, LNCS 5401, pp. 22–40, 2008.

[16] Mao-Lun Chiang, Shu-Ching Wang, and Lin-Yu Tseng3, "The Anatomy Study of
Consensus Agreement in MANETs", 2005, URL.

[17] S.Mallapur, S.Patil, "Survey on Simulation Tools for Mobile Ad-Hoc Networks",
International Journal of Computer Networks and Wireless Communications
(IJCNWC), Vol.2, No.2, April 2012.

[18] S.Duan, S.Peisert, And K.Levitt, "hBFT: Speculative Byzantine Fault Tolerance
with Minimum Cost ", IEEE Transactions on Dependable and Secure Computing
Volume: 12, Issue: 1, Feb 2015.

[19] H.LeBlanc and Et.Al, "Resilient Asymptotic Consensus in Robust Networks",
IEEE Journal on Selected Areas in Communications Volume: 31, Issue: 4, April
2013, pp.766-781.

[20] L.Tseng and N.Vaidya, "Byzantine Consensus in Directed Graphs", US army
Research Office grant, Feb 2013.

[21] C.Cachin and M.Vukolic, "Blockchain Consensus Protocols in the Wild", IBM
Research - Zurich, Jul 2017.

[22] M.Desai and S.Nagtilak, “A Survey of Network Layer Attacks in MANET Using
Sequence Diagram”, International Journal of Innovative Reasearch in Computer
and Communication Engineering Vol.4 Issue 10, October 2016

[23] D.Ongaro and J.Ousterhout, “In Search of an Understandable Consensus
Algorithm”, Stanford University, 2014.

[24] H.Chauhan and A.Chauhan, “Implementation of decision tree algorithm c4.5”,
International Journal of Scientific and Research Publications, Volume 3, Issue 10,
Oct 013.

[25] A.Mitrokotsa and C.Dimitrakakis, "Intrusion detection in MANET using
classification algorithms:The effects of cost and model selection", Ad-Hoc
networks, Vol. 11, 2013 .

[26] R.Bouckaert and Et.Al, "WEKA Manual for Ver 3-7-8", Jan 21 2013

