

 Journal Of Al Azhar University Engineering Sector

 Vol. 12, No. 42, January, 2017, 187198

SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING

PROBLEM USING GENETIC ALGORITHM

Raafat Elshaer, Mona shawky, Hesham Elawady, Gamal Nawara

Industrial Engineering Department, Faculty of Engineering, Zagazig University, Sharkia, Egypt

ABSTRACT
Due to the combinatorial nature of the resource-constrained project scheduling problem

(RCPSP), there is a lot of artificial intelligence methods proposed to solve it. The Genetic
Algorithm (GA), one of these methods, is considered to be a valuable search algorithm capable of
finding a reasonable solution in a short computational time. The primary objective of this paper is
to build a genetic algorithm for solving RCPSP problem aiming at minimizing project’s
makespan. Based on a comprehensive review of different GAs and a full factorial experiment, a
proposed GA has been presented. The proposed algorithm has been tested on a well-known
benchmark (PSPLIB). The computation results show that the proposed GA outperforms many
published algorithms and on average performs as well as other algorithms. Also, the
performance of the algorithm improves in solving large scale problems.

Keywords: Resource Constrained Project Scheduling problems; Genetic Algorithm;
 Project makespan

1. INTRODUCTION

Resource-constrained project scheduling problem (RCPSP) is a well-known problem widely

studied in the literature. There are several papers that review research for the problem. The

general work of Brucker et al. (1998) as well as the work of Hartmann & Kolisch (2000) focuses

on heuristic algorithms to solve the problem. It has been shown by Blazewicz et al. (1983) that

the RCPSP belongs to the class of NP-hard optimization problems. The RCPSP can be stated as

follows: A single project consists of activities where each activity has to be processed in

order to complete the project. The dummy activities and correspond to the project start

activity and to the project end activity, respectively. The activities are interrelated with two kinds

of constraints. First, precedence constraints force activity not to be started before all its

immediate predecessor activities are finished. Second, the activities require resources with

limited capacities. There is a set of resource types. While being processed, activity requires

 units of resource type during every period of its non-preemptable duration, .

Resource type k has a limited capacity of at any point in time. The parameters , , and

are assumed to be non-negative and deterministic; for the project start and end activities, we have

, for all . The objective of the RCPSP is to find both precedence and

resource feasible completion times for all activities such that the makespan of the project is

minimized. The conceptual decision model of the RCPSP, Kolisch & Hartmann (1999) is given

SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM USING GENETIC ALGORITHM

as follows:

 (1)

Subject to

 (2)

 (3)

 (4)

The variable denotes the finish times of activity , (); and , the set
of activities being in progress in period , is defined as

. The objective function (1) minimizes the
completion time of the makespan of the project. Constraints (2) take into consideration the
precedence relations between each pair of activities , where , the set of activities
immediately precedes . Finally, constraint set (3) limits the total resource usage within each
period to the available amount. Constraint (4) is to enforce the project to start at time 0.

In order to find a schedule, the decoding procedures, so-called Schedule Generation Schemes

(SGSs), are used. SGS generates the schedule, based on the activity list or the priority list, taking

into account the availability of the resources and the precedence relationships. SGS starts from an

empty set of sequenced activities and constructs a schedule by stepwise extension of a partial

schedule. There are two SGS procedures that are considered the core of most RCPSP heuristics:

serial SGS (SSGS) and parallel SGS (PSGS). Whereas SSGS performs activity incrementation,

PSGS performs time-incrementation. For details, refer to Kolisch (1996b).

The main objective of this paper is to build a genetic algorithm for solving RCPSP. This paper is

organized as follows: Section 2 presents a literature review of solving RCPSP using genetic

algorithms. Section 3 presents the proposed algorithm, experimental design and default settings.

Computational results for validating the algorithm are discussed in section 5. Section 6 is left for

conclusions and future work.

2. REVIEW OF GENETIC ALGORITHM LITERATURE FOR RCPSP
Genetic algorithm (GA) was developed by Goldberg (1989) as a computational approach to solve
hard problems. It mimics the principles of biological evolution to solve hard optimization
problems. Many researchers have developed different GA algorithms for solving RCPSP
problem.

Hartmnn (1998) proposed a GA in which he generated the initial population with two ways,
randomly and random sampling using latest finish time (LFT) rule and used both serial (SSGS)
and parallel (PSGS) generation scheme. He used three representations: activity list (AL), priority
rules and priority value. He used three crossover methods: one-point (1PX), two-point (2PX) and
uniform crossover (UX); as well as one mutation method, Invert Mutation (INVM) with
probability Pm = 0.01, 0.05 and 0.1; and four selection methods: proportional, tournament size 2
(TS-2), tournament size 3 (TS-3) and ranking (RNKS). Three population sizes were used, Ps= 20,
40 and 50. He tested the three representations and found that AL representation gave the best
results. He extended his work in Hartmnn (2002). His proposed GA employed the AL
representation and the two decoding SSGS and PSGS procedures; two priority rules (LFT, LST
(latest start time)) and a random activity selection method were used for generating the initial
population. He used two point crossover (2PX), Insert Mutation (INSM), Pm=0.05 and Ranking
Selection (RNKS), the Proportional Selection as well as the Tournament Selection (TS), and two
population sizes, 40 and 90.
Alcaraz & Maroto (2001) developed a GA which used SSGS and an activity list representation
with scheduling mode (forward/backward) (AL-F/B). A schedule was generated using an
additional gene which decided whether a forward or backward scheduling needed to be employed
(F/B gene). To generate the initial population, they have employed a sampling procedure with

SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM USING GENETIC ALGORITHM

LFT as the selection rule. They have implemented three different selection mechanisms:
remainder stochastic sampling without replacement, TS-2 and RNKS; four crossover methods:
the precedence set crossover (PPX), one point forward–backward crossover (1PX-F/B), two point
forward–backward crossover (2PX-F/B) and 2PX developed by (Hartmann 1998) with
probabilities and ; two different mutation operators: INSM and INVM with
probabilities and ; and two population sizes, and .
Debels & Vanhoucke (2005) proposed a genetic algorithm which considered two populations and
hence was named as Bi-population Genetic Algorithm (BPGA). Both left-justified (forward)
which sorted activities in the increasing order of the start time and right justified (backward)
which sorted activities in the decreasing order of the finish times population were considered.
The default settings of their proposed GA are as follows: randomly generated initial population,
SSGS, TS-2 and 2PX, with no mutation.
Franco et al. (2007) have used the following GA: AL representation, randomly generated initial
population, SSGS, two crossover methods: 1PX and 2PX with probabilities ,

, INVM mutation and population size 100.
Toni et al. (2008) developed a GA with the following settings: AL representation, randomly
generated initial population, two selections: Steady state, tournament size 3 (TS-3), maximum
number of generations = 300 or maximum number of consecutive generations without best
solution improvement = 50, Uniform crossover (UX) with probability and swap
mutation (SWM) with probability Pm=0.05.
Cervantes et al. (2008) developed a steady-state genetic algorithm that used a dynamic
population, i.e. the algorithm started with a determined number of individuals and as the search is
progressing, the size of the population grows. They increased the population size by 25% of the
previous population size each time that 1000 new schedules have been evaluated. They used the
activity list (AL-F/B) representation, both serial and parallel SGS in two directions forward (F)
and backward (B), initial population generated using priority rules, TS-2, 2PX crossover with
probability , and Insert Mutation (INSM) with probability .
Valls et al. (2008) suggested a hybrid genetic algorithm (HGA) with activity list (AL-F/B)
representation, the initial population obtained using the LFT priority rule, serial SGS in two
directions: forward and backward, peak crossover (PeX) with probabilities and 0.9,
INVM mutation with probability , and RNKS selection. The values of POP size
selected were Ps = 24, 50, 100,200, and 400.

Klimek (2010) proposed a GA which used the following settings: AL representation, randomly
generated initial population, SSGS, population size , roulette wheel selection (RWS) and
tournament selection (TS), three crossover operators: 1PX, 2PX and PPX with probability (Pc =
0.7), four mutation operators: INVM, Swap adjacent (SADM), SWM, and INSM with probability

; elite size was equal to 0 (no elitist) or 2 (two elite chromosomes) , and maximal
number of generations = 100.
Diana et al. (2013) proposed a GA which used binary-string-based representations, randomly
generated initial population with size , SSGS decoding procedure, roulette wheel
selection (RWS), one point binary crossover (1PX-B) with probability and binary
mutation (BM) with probability .
Table 1 shows a summary of different GAs used in solving RCPSP problem. The table
summaries each study as follows: authors, publication year, problem representation, how initial
population is generated, the SGS employed, the stop criterion, operators and parameters used.

3. Proposed Algorithm
The good performance of a genetic algorithm depends on the selection of a good combination

of GA operators and parameters. Based on the literature review and Table 1, four selection
methods, five crossover operators and four mutation operators are used in designing different
genetic algorithms for solving RCPSP as shown in Table 2.

SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM USING GENETIC ALGORITHM

Table 1: Summary of the genetic algorithms used for solving RCPSP

Author year

Solution

representation

(Encoding)

Initial

population

generation

Evaluatio

n (SGS)
Stop criterion

Operators Parameters

Mutation Crossover Selection method

Mutation

probability

(Pm)

Crossover

probability

(Pc)

Popul

ation

Size

(PS)

J.Alcaraz

and

C.Maroto

2001 1. The standard

activity list.

2. Activity list with

scheduling mode.

Priority rule

(LFT).

Serial 1.Insert

2.Invert

1- Precedence

Crossover.

2- One point F/B

Crossover

3- Two point F/B

crossover.

4- Two point

crossover.

1- Remainder

stochastic

sampling without

replacement.

2- Tournament.(2-

tour)

3- Ranking.

0.05

0.01

0.5

0.8

50

100

Mariamar

and

Antonio etl

2008

Activity list Priority

rules

Serial,

parallel

When no

improvement is

achieved in two

consecutive BF

iterations

Insert Two-point crossover 2- Tournament 0.05 0.8 Increa

sing

with

25%

S Diana,L

Ganapathy.e

tl

 2013 Activity list Randomly Serial When number

of Generation as

500

Binary Mutation One-point Binary

crossover

Roulette wheel .95 .95 200

Marcin

Klimek

2010

Activity list Randomly Serial,

parallel

Maximal

number of

generations =

5000 schedules

1- Invert

2- Swap

1. 3-Swap

Adjacent

2. 4-Insert

-One-point

,Two point

,Precedence

Crossover

1-Roulette wheel

2- Tournament

0.2 0.7 50

Toni

Frankola.M

arin

Golub,etl

2008

Priority value Randomly Maximum

number of

generations

(300) or

maximum

number of

consecutive

generations

without best

solution

improvement50

swap Uniform vector

crossover

Steady state,

tournament

0.05 0.5 500

Franco,EG,e

tl

2007 Activity list Randomly serial Invert One-point,

Two point

Elitist 0.7

0.3

100

Sonke

hartmann

1997

Activity list, priority

value, priority rule

Randomly,

priority

rules,

priority

value

Serial,

parallel

 Adjacent

One point

,Two point,

Uniform crossover

1-Ranking

2-Proportional

0.05,0.01,0.1

0

 40

Sonke

hartmann

2001

Activity list Randomly,

priority rule

(LFT&LST)

Serial,

parallel

Not more than

5000

Swap adjacent Two-point Ranking,

proportional,

tournament

0.05 40 ,90

Vicente,fran

cisco,etl

2007 Random

sampling

(LFT)

Serial,

parallel

Maximum no.

of schedules

equal5000

invert Peak crossover Ranking 0.05 .9 24,50,

100,20

0 ,400

Edgar,Ferna

ndo,etc

 Activity list Randomly

serial Adjacent

One-point

Two-point

 0.7 0.3 100

SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM USING GENETIC ALGORITHM

Table 2: selection, crossover and mutation methods used in RCPSP

Method Code

S
el

ec
ti

o
n

Random Selection RNDS

Roulette Wheel Selection RWS

Ranking Selection RNKS

Tournament Selection (tour size = 2) TS-2

Tournament Selection (tour size = 3) TS-3

Tournament Selection (tour size = 4) TS-4

Tournament Selection (tour size = 5) TS-5

C
ro

ss
o

v
e

r

One point crossover 1PX

Two point crossover 2PX

Uniform crossover UX

Peak crossover PeX

M
u

ta
ti

o
n

 Invert Mutation INVM

Insert Mutation INSM

Swap Mutation SWM

Swap Adjacent Mutation SADM

4.1 Experimental design

For selecting best candidate GA, a full factorial experiment was designed with three

operators, selection methods (Sm), crossover methods (Cm) and mutation methods (Mm), as

shown in Table 2. Where there are seven selection methods (random, roulette wheel, ranking

and tournament with four sizes), four crossover methods and four mutation methods. In

addition, two evaluation methods (Ev), SSGS and PSGS, were used. The GA depends also on

the following parameters: population size (Ps), crossover probability (Pc) and mutation

probability (Pm). The proposed values for these parameters are listed in Table 3. Therefore,

the total number of combinations of operators and parameters

Table (3) GA proposed parameter

Parameter/operator Value/code

Population size 10, 20, 30, 40, 50, 80

No. of generation 5000

Mutation probability 0, 0.02, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, 0.25, 0.3

Crossover probability 0.0, 0.1,0.2,0.3,0.4,0.5, 0.6,0.7 0.8,0.9,1.0

Evaluation method SGS, PGS

The implementation model of the proposed experiment is coded using C# language

(Microsoft Visual Studio 2010). The experiment is applied on the first problem (J30_1.rcp)

of J30 set available in the Project Scheduling Problem Library PSPLIB
1
. For the purpose of

brevity, the computational results and the statistical analysis show that the following settings

give the best minimum deviations from the optimal makespan, five selection methods

{RNDS, RWS, RNKS, TS-2, and TS-4}, three crossover methods {2PX, UX, and PeX},

three mutation methods {INV, IINS, and SADM}, three crossover probabilities {0.6, 0.7, and

0.8}, two Evaluations {SSGS and PSGS}, one population size Ps = 50 and three mutation

1
 Download datasets: http://www.bwl.uni-kiel.de/Prod/psplib/

http://www.bwl.uni-kiel.de/Prod/psplib/

SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM USING GENETIC ALGORITHM

probabilities {0.15, 0.2, and 0.25}. From the results, the second experiment shown in Table 4

is tested on the first ten problems of J60 PSPLIB (60 activities each). 5 runs and 5000

generations per run are used for solving each problem. The performance measure used is the

percentage of getting the best known solution as shown in Figure 1. Based on Table 4, we

have the following

combinations .

Table (4): Operators and parameters settings for second experiment

Parameter/ operator Value/Code

Selection method RNDS, RWS, TS-2, TS-4,

RNKS

Crossover method 2PX, UX, PeX

Mutation method INVM, INSM, SADJM

Crossover probability 0.6, 0.7, 0.8

Mutation probability 0.25, 0.2, 0.15

Population size 50

No. of generations 5000

Evaluation method SSGS, PSGS

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

2PX UX PeX

Crossover method

%
 N

O
. o

f
b

e
st

 s
o

lu
ti

o
n

s

SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM USING GENETIC ALGORITHM

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0.15 0.2 0.25

Mutation probability

%
 N

o
. o

f
b

e
st

 s
o

lu
ti

o
n

Figure 1: Impact of different GA’s operators and parameters

4.2 Impact of GA’s operators/parameters
The experiment results are shown in Figure 1 for each operator and parameter mentioned in Table 4. The

charts in the figure show the following: for the selection methods, the linear ranking method (RNKS)
outperforms the others. However, TS-2 and TS-4 are on average doing well, while roulette wheel method
gives the worst performance. The two point crossover (2PX) outperforms the UX and PeX methods and
the crossover probability Pc=0.7 gives better performance than the other two values, 0.6 and 0.8. Insert
mutation (INSM) is better than INVM and SWM, while the mutation probability Pm = 0.25 is the best.
Regarding the evaluation method, it is observed that the SSGS is better than PSGS.

4.3 Default settings
It is clear from the above section that the GA settings shown in Table 5 give the best

performance. Therefore, the default settings of these values provide the proposed GA.

Table 5: Proposed GA settings (Default Values)

Operator/Parameter Type / Value

Selection Method Linear Rank method(RNKS)

Crossover Operator Method Two point Crossover (2PX)

Mutation Operator Method Insert mutation (INSM)

Crossover Probability 0.7

Mutation Probability 0.25

Population size 50

5 COMPUTATIONAL RESULTS
5.1 Test Design

For validating the proposed algorithm, we have taken three standard sets of RCPSP instances from
the literature constructed by the project generator ProGen of Kolisch, et al. (1995). These instance sets are
open source as mentioned earlier. The first two sets, J30 and J60, contain 480 instances with 30 and 60
activities per project, respectively. The third one, J120, consists of 600 instances with 120 activities. For
the purpose of comparison, we have selected 1000, 5000 and 50000 schedules as stopping criteria and the
two SGS are applied.

5.2 Computational results
The experiments have been performed on Dell XPS L502X (i7 – 2630 QM CPU 2GHz, 8 GB RAM).

The computational results of the three sets are as shown in Table 6. For the J30 set, the results are given in
terms of average deviation from the optimal solution. For the other two sets, some of the optimal
solutions are unknown. Thus, the average deviation from the well-known critical path-based lower bound
is reported. From table 6, it can be seen that the deviation values increase as the size of the problem

SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM USING GENETIC ALGORITHM

increase. This means that the RCPSP with larger scale is more difficult to solve since the problem is NP-
hard problem. In addition, for each set of problems, the deviation values decrease as the maximum
number of schedules increase. It shows that the proposed algorithm can keep finding better results as
more schedules are explored. Also, it is observed that the serial SGS outperforms the parallel SGS on
small problems and it is doing on average as well as it in large ones.

Table 6: Average deviation (%) from optimal or lower bound makespan for J30, J60 and J120

Problem set SGS Max # of Schedule

 1000 5000 50000

J30 Ave. OPT. Dev Serial 0.50% 0.18% 0.12%

Parallel 1.36 1.25 1.13

J60 Ave .LB. Dev Serial 13.43 12.61 11.77

Parallel 13.43 13.08 12.6

J120 Ave. LB. Dev Serial 37.25 34.54 32.03

Parallel 37.18 34.49 32.93

The results for the three instance sets are also compared with the results of 28 existing algorithms from
the literature as shown in Tables 7, 8 and 9 respectively. Each algorithm is briefly described by a few
keywords, the SGS employed, and the reference. Also as mentioned above, the results are given in terms
of average deviation from the optimal solution for the J30 set shown in Table 7, and in terms of the
average deviation from the well-known critical path-based lower bound for the other two sets shown in
Tables 8 and 9. The methods are sorted with respect to the results for 50,000 schedules and then for
5,000.

Table 7: Average deviation (%) from optimal makespan — ProGen set J=30

Algorithm SGS Reference Max. #schedules

 1000 5000 50,000

GA, TS — path relinking Both (Kochetov & Stolyar (2003)) 0.1% 0.04% 0%

Scatter Search—FBI Serial (Debels et al. (2003)). 0.27 0.11 0.01

ACOSS (Chen et al. (2010)) 0.14 0.06 0.01

GAPS (Mendes et al. (2009)) 0.06 0.02 0.01

GA — hybrid, FBI Serial (Valls et al. (2008)) 0.27 0.06 0.02

GA — FBI Serial (Valls et al. (2005)) 0.34 0.2 0.02

GA — forw.–backw., FBI Both (Alcaraz et al. (2003)) 0.25 0.06 0.03

GA — forw.–backw. Serial (Alcaraz & Maroto (2001)) 0.33 0.12 –

ABC-RK (Shi et al. (2010)) 0.35 0.12 0.04

Sampling — LFT, FBI Both (Tormos & Lova (2003b)) 0.25 0.13 0.05

TS — activity list Serial (Nonobe & Ibaraki (1998)) 0.46 0.16 0.05

Sampling — LFT, FBI Both (Tormos & Lova (2001)) 0.3 0.16 0.07

GA — self-adapting Both (Hartman, (2002)) 0.38 0.22 0.08

GA — activity list Serial (Hartmann (1998)) 0.54 0.25 0.08

Sampling — LFT, FBI Both (Tormos & Lova (2003a)) 0.3 0.17 0.09

Sampling — random, FBI Serial (Valls et al. (2005)) 0.46 0.28 0.11

THIS STUDY Serial 0.5 0.18 0.12

SA — activity list Serial (Bouleimen & Lecocq (2003)) 0.38 0.23 –

GA — late join Serial (Coelho & Tavares (2003)) 0.74 0.33 0.16

Sampling—adaptive Both (Kolisch & Drexl (1996)) 0.74 0.52 –

GA—random key Serial (Kiel & Hartmann (1997)) 1.03 0.56 0.23

Sampling—LFT Serial (Kolisch (1996b)) 0.83 0.53 0.27

Sampling—global Serial (Coelho & Tavares (2003)) 0.81 0.54 0.28

Sampling—random Serial (Kolisch (1995)) 1.44 1 0.51

GA—priority rule Serial (Hartmann (1998)) 1.38 1.12 0.88

Sampling—WCS Parallel (Kolisch, (1996a, b)) 1.4 1.28 – –

Sampling—LFT Parallel (Kolisch, (1996b)) 1.4 1.29 1.13

THIS STUDY Parallel 1.36 1.25 1.13

Sampling—random Parallel (Kolisch (1995)) 1.77 1.48 1.22

GA—problem space
Mod.

par.
(Leon & Ramamoorthy (1995)) 2.08 1.59 –

SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM USING GENETIC ALGORITHM

From Tables 7 to 9, it is observed that the proposed algorithm with serial SGS is capable of getting
good results compared by the other algorithms. With 50,000 schedules among all the 28
algorithms for J30, J60 and J120, the algorithm with serial SGS ranks 17th, 17th and 7th
respectively. In case of J30, the gap between our algorithm and the best one is 0.44% with
1000 schedules, 0.16% with 5000 schedules and 0.12% with 50,000 schedules. For data set
J120, our algorithm is the 7th best with 50,000 schedules, where the gap between it and the
best one is 3.18% with 1000 schedules, 2.06% with 5000 schedules and 1.47% with 50,000
schedules. As observed, the gap decreases as the number of schedules increases and the order
of the algorithm improves as increasing the problem size. So, the proposed algorithm
considers an effective and competitive in solving the RCPSP with medium and large scales.
In addition, the performance of parallel SGS is not competitive comparing with the rest of
algorithms.

Table 8: Average deviations (%) from critical path lower bound — ProGen set J = 60

Algorithm SGS Reference Max. #schedules

 1000 5000 50,000

ACOSS (Chen et al. (2010)) 11.75% 10.98% 10.66%

Scatter search — FBI Serial (Debels et al. (2003)). 11.73 11.1 10.71

GA — hybrid, FBI Serial (Valls et al. (2008)) 11.56 11.1 10.73

GA, TS — path relinking Both (Kochetov & Stolyar (2003)) 11.71 11.17 10.74

GA — FBI Serial (Valls et al.(2005)) 12.21 11.27 10.74

GAPS (Mendes et al. (2009)) 11.72 11.04 10.67

GA — forward–backward,

FBI
Both (Alcaraz et al. (2003)) 11.89 11.19 10.84

ABC-RK (Shi et al. (2010)) 12.75 11.48 11.18

GA — self-adapting Both (Hartmann (2002)) 12.21 11.7 11.21

GA — activity list Serial (Hartmann (1998)) 12.68 11.89 11.23

Sampling — LFT, FBI Both (Tormos & Lova (2003b)) 11.88 11.62 11.36

Sampling — LFT, FBI Both (Tormos & Lova (2003a)) 12.14 11.82 11.47

GA — forward–backward Serial (Alcaraz & Maroto (2001)) 12.57 11.86 –

Sampling — LFT, FBI Both (Tormos & Lova (2001) 12.18 11.87 11.54

SA — activity list Serial (Bouleimen & Lecocq (2003)) 12.75 11.9 –

TS — activity list Serial (Nonobe & Ibaraki (1998)) 12.97 12.18 11.58

THIS STUDY Serial 13.43 12.61 11.77

Sampling — random, FBI Serial (Valls et al. (2005)) 12.73 12.35 11.94

GA — late join Serial (Coelho & Tavares (2003)) 13.28 12.63 11.94

GA — random key Serial (Hartmann (1998)) 14.68 13.32 12.25

GA — priority rule Serial (Hartmann (1998)) 13.3 12.74 12.26

THIS STUDY Parallel 13.43 13.08 12.5

Sampling — adaptive Both (Kolisch & Drexl (1996)) 13.51 13.06 –

Sampling — WCS Parallel (Kolisch (1996a, b)) 13.66 13.21 –

Sampling — global Serial (Coelho & Tavares (2003)) 13.8 13.31 12.83

Sampling — LFT Parallel (Kolisch (1996b)) 13.59 13.23 12.85

GA — problem space Mod. par. (Leon & Ramamoorthy (1995)) 14.33 13.49 –

Sampling — LFT Serial (Kolisch (1996b)) 13.96 13.53 12.97

Sampling — random Parallel (Kolisch (1995)) 14.89 14.3 13.66

Sampling — random Serial (Kolisch (1995)) 15.94 15.17 14.22

SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM USING GENETIC ALGORITHM

Table 9: Average deviations (%) from critical path lower bound — ProGen set J = 120

Algorithm SGS Reference Max. #schedules

 1000 5000 50,000

ACOSS (Chen et al. (2010)) 35.19% 32.48% 30.56%

GA — hybrid, FBI Serial (Valls et al. (2008)) 34.07 32.54 31.24

GAPS (Mendes et al. (2009)) 35.87 33.03 31.44

GA — forward–backward, FBI Both (Alcaraz et al. (2003)) 36.53 33.91 31.49

Scatter Search — FBI Serial (Debels et al. (2003)) 35.22 33.1 31.57

GA — FBI Serial (Valls et al. (2005)) 35.39 33.24 31.58

THIS STUDY Serial 37.25 34.54 32.03

GA, TS — path relinking Both (Kochetov & Stolyar (2003)). 34.74 33.36 32.06

Population-based — FBI Serial (Valls et al. (2005)) 35.18 34.02 32.81

THIS STUDY Parallel 34.7 34.49 32.93

GA—self-adapting Both (Hartmann (2002)) 37.19 35.39 33.21

ABC-RK (Shi et al. (2010)) 36.29 34.18 33.69

Sampling—LFT, FBI Both (Tormos & Lova (2003b)) 35.01 34.41 33.71

GA — activity list Serial (Hartmann (1998)) 39.37 36.74 34.03

Sampling — LFT, FBI Both (Tormos & Lova (2003a)) 36.24 35.56 34.77

Sampling — LFT, FBI Both (Lova & Tormos (2001)) 36.49 35.81 35.01

GA — forward–backward Serial (Alcaraz & Maroto (2001)) 39.36 36.57 –

TS — activity list Serial (Nonobe & Ibaraki (1998)) 40.86 37.88 35.85

GA — late join Serial (Coelho & Tavares (2003)) 39.97 38.41 36.44

Sampling — random, FBI Serial (Valls et al. (2005)) 38.21 37.47 36.46

SA — activity list Serial (Bouleimen & Lecocq (2003)) 42.81 37.68 –

GA — priority rule Serial (Hartmann (1998)) 39.93 38.49 36.51

Sampling — LFT Parallel (Kolisch (1996b)) 39.6 38.75 37.74

Sampling — WCS Parallel (Kolisch (1996a, b)) 39.65 38.77 –

GA — random key Serial (Hartmann (1998)) 45.82 42.25 38.83

Sampling — adaptive Both (Kolisch & Drexl (1996)) 41.37 40.45 –

Sampling — global Serial (Coelho & Tavares (2003)) 41.36 40.46 39.41

GA — problem space Mod. par. (Leon & Ramamoorthy (1995)) 42.91 40.69 –

Sampling — LFT Serial (Kolisch (1996b)) 42.84 41.84 40.63

Sampling — random Parallel (Kolisch (1995) 44.46 43.05 41.44

Sampling — random Serial (Kolisch (1995)) 49.25 47.61 45.6

6. CONCLUSIONS AND FUTURE WORK
This paper, presents a genetic algorithm based heuristic for the classical resource-constrained
project scheduling problem. The computational experiments on a large set of standard test
instances have shown that the proposed algorithm leads to better results than several heuristic
approachs from the literature. The algorithm is capable of providing near-optimal solutions for a
large scale RCPSP. Impact of the project network topology on the performance of serial and
parallel SGS will be considered in the future work.

REFERENCES

1. Alcaraz, J., Maroto, C. "A Robust Genetic Algorithm for Resource Allocation in Project
Scheduling" Annals of Operations Research, 102(1–4), 2001, 83–109.
http://doi.org/10.1023/A:1010949931021.

2. Alcaraz, J., Maroto, C., Ruiz, R. "Solving the Multi-Mode Resource-Constrained Project
Scheduling Problem with genetic algorithms" Journal of the Operational Research
Society, 54(6), 2003, 614–626. http://doi.org/10.1057/palgrave.jors.2601563.

3. Blazewicz, Lenstra, J., Rinnooy Kan A. "Scheduling Subject to Resource-Constraints:
Classi cation and Complexity" Discrete Applied Mathematics 5, 1983, 1 -1 24.

4. Bouleimen, K., Lecocq, H. "A New Efficient Simulated Annealing Algorithm for the

SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM USING GENETIC ALGORITHM

Resource-Constrained project scheduling Problem and its Multiple Mode Version"
European Journal of Operational Research, 149(2), 2003, 268–281.
http://doi.org/10.1016/S0377-2217(02)0076

5. Brucker, P., Knust, S., Schoo, A., Thiele, O. "A Branch & Bound Algorithm for the
Resource-Constrained Project Scheduling Problem" European Journal of Operational
Research, 1998.

6. Cervantes, M., Lova, A., Tormos, P., Barber, F. "A Dynamic Population Steady-State
Genetic Algorithm for the Resource-Constrained Project Scheduling Problem" In
International Conference on Industrial, Engineering and Other Applications of Applied
Intelligent Systems, 2008, (pp. 611-620). Springer Berlin Heidelberg.

7. Chen, W., Shi, Y., Teng, H., Lan, X., Hu, L. "An Efficient Hybrid Algorithm for
Resource-Constrained Project Scheduling" Information Sciences, 180(6), 2010 1031–
1039. http://doi.org/10.1016/j.ins.2009.11.044

8. Coelho, J., Tavares, L. "Comparative Analysis of Metaheuricstics for the Resource-
Constrained Project Scheduling Problem" Technical report, Department of Civil
Engineering, Instituto Superior Tecnico, Portugal, 2003.

9. Debels, D., De Reyck, B., Leus, R., Vanhoucke, M. "A Hybrid Scatter Search.
Electromagnetism Meta-Heuristic for Project Scheduling" DTEW Research Report 0340,
2003, 1–21. http://doi.org/10.1016/j.ejor.2004.08.020

10. Debels, D., Vanhoucke, M. "A Bi-Population Based Genetic Algorithm for the Resource-
Constrained Project Scheduling Problem" ICCSA, Vol. 4, 2005, 378-387.

11. Diana, S., Ganapathy, L. Ashok K. "An Improved Genetic Algorithm for Resource-
Constrained Project Scheduling Problem" International Journal of Computer Applications
(0975 – 8887) Volume 78 – No.9, September 2013.

12. Franco, E.G., Zurita, F.T., Delgadillo, G.M. "A Genetic Algorithm for the Resource-
Constrained Project Scheduling Problem (RSPSP)" Bolivia Research and Development,
Vol.7, 2007, 41–52.

13. Goldberg, D.E. "Genetic Algorithms in Search, Optimization, and Machine Learning"
The University of Alabama, Addison Wesley publishing, 1989.

14. Hartmann, S. "A Competitive Genetic Algorithm for Resource-Constrained Project
Scheduling" Naval Research Logistics (NRL), 45, 1998, 733–750.
http://doi.org/10.1002/(SICI)1520-6750(199810)45:7<733::AID-NAV5>3.0.CO;2-C

15. Hartmann, S. "A Self-Adapting Genetic Algorithm for Project Scheduling Under
Resource-Constraints" Naval Research Logistics, 49(5), 2002, 433–448.
http://doi.org/10.1002/nav.10029

16. Hartmann, S., Kolisch, R. "Experimental Evaluation of State-of-the-Art Heuristics for the
Resource-Constrained Project Scheduling Problem" European Journal of Operational
Research, 127(2), 2000, 394-407.

17. Kiel, D. U., Hartmann, Manuskripte aus den Instituten fur Betriebswirtschaftslehre "A
Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 1
Introduction" Mathematical Programming, (451), 1997.

18. Klimek, Marcin. "A genetic Algorithm for the Project Scheduling with the Resource-
Constraints" Annales UMCS, Informatica. Vol. 10. No. 1. 2010.

19. Kochetov, Y., Stolyar, "A. Evolutionary Local Search with Variable Neighborhood for
the Resource-Constrained Project Scheduling Problem" Workshop on Computer Science
and Information Technologies CSIT’2003, 1–4.

20. Kolisch, R. "Project Scheduling under Resource-Constraints-Efficient Heuristics for
several Problem Classes" Physica 14, 1995.

21. Kolisch, R., Sprecher, A., Drexl, A. "Characterization and Generation of a General Class
of Resource–Constrained Project Scheduling Problems" Management Science 41 (10)
(1995) 1693–1703.

22. Kolisch, R. "Efficient Priority Rules for the Resource-Constrained Project Scheduling
Problem" Journal of Operations Management 14 (1996a) 179–192.

SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM USING GENETIC ALGORITHM

23. Kolisch, R. Serial and Parallel "Resource-Constrained Project Scheduling Methods

Revisited: Theory and computation" European Journal of Operational Research, 90(2),
1996b, 320–333. http://doi.org/http://dx.doi.org/10.1016/0377-2217(95)00357-6

24. Kolisch, R., Drexl, A. "Adaptive Search for Solving Hard Project Scheduling Problems"
Naval Research Logistics, 43(1), 1996, 23–40. http://doi.org/10.1002/(SICI)1520-
6750(199602)43:1<23::AID-NAV2>3.3.CO;2-4

25. Kolisch, R., Hartmann, S. "Heuristic Algorithms for Solving the Resource-Constrained
Project Scheduling Problem" Project Scheduling: Recent Models, Algorithms, and
Applications, 14(1), 1999, 147. Retrieved from
http://www.hsba.de/de/pdf/professoren/Hartmann_Hartmann_klosch_Heuristicalgorithms
.pdf.

26. Leon, V.J., Ramamoorthy, B. "Strength and Adaptability of Problem-Space based
Neighborhoods for Resource-Constrained scheduling" OR Spektrum 17 (1995) 173–182.

27. Mendes, J. J. M., Gonçalves, J. F., Resende, M. G. C. "A Random Key Based Genetic
Algorithm for the Resource-Constrained Project Scheduling problem" Computers &
Operations Research, 36(1), 2009, 92–109. http://doi.org/10.1016/j.cor.2007.07.001.

28. Nonobe, K., Ibaraki, T. "A Tabu Search Approach to the Constraint Satisfaction Problem
as a General Problem" Solver. European Journal of Operational Research, 106(2–3),
1998 599–623. http://doi.org/10.1016/S0377-2217(97)00294-4.

29. Shi, Y. J., Qu, F. Z., Chen, W., & Li, B. An Artificial Bee Colony with Random Key for
Resource-Constrained Project Scheduling. Life System Modeling and Intelligent
Computing, 2010, 148–157.

30. Toni F., Marin G., Domagoj J. Evolutionary Algorithms for the Resource-Constrained
Scheduling Problem. Faculty of Electrical Engineering and Computing, University of
Zagreb, 2008, domagoj.jakobovic@fer.hr

31. Tormos, P., Lova, A. A Competitive Heuristic Solution Technique for Resource-
Constrained Project Scheduling, Annals of Operations Research 102, 2001, 65–81.

32. Tormos, P., Lova, A. An Efficient Multi-Pass Heuristic for Project Scheduling with
Constrained-Resources, International Journal of Production Research 41 (5) (2003a)
1071–1086.

33. Tormos, P., Lova, A. Integrating Heuristics for Resource-Constrained Project
Scheduling: One Step Forward. Technical report, Department of Statistics and Operations
Research, Universidad Polite´cnica de Valencia, 2003b

34. Valls, V., Ballestín, F., Quintanilla, S. Justification and RCPSP: A Technique that Pays.
European Journal of Operational Research, 165(2), 2005, 375–386.
http://doi.org/10.1016/j.ejor.2004.04.008

35. Valls, V., Ballestín, F., Quintanilla, S. A Hybrid Genetic Algorithm for the Resource-
Constrained Project Scheduling Problem. European Journal of Operational Research,
185(2), 2008, 495–508. http://doi.org/10.1016/j.ejor.2006.12.033

