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ABSTRACT 
Due to the combinatorial nature of the resource-constrained project scheduling problem 

(RCPSP), there is a lot of artificial intelligence methods proposed to solve it. The Genetic 
Algorithm (GA), one of these methods, is considered to be a valuable search algorithm capable of 
finding a reasonable solution in a short computational time. The primary objective of this paper is 
to build a genetic algorithm for solving RCPSP problem aiming at minimizing project’s 
makespan. Based on a comprehensive review of different GAs and a full factorial experiment, a 
proposed GA has been presented. The proposed algorithm has been tested on a well-known 
benchmark (PSPLIB). The computation results show that the proposed GA outperforms many 
published algorithms and on average performs as well as other algorithms.  Also, the 
performance of the algorithm improves in solving large scale problems.  
 
Keywords: Resource Constrained Project Scheduling problems; Genetic Algorithm;      
                    Project makespan 
 
1. INTRODUCTION 

Resource-constrained project scheduling problem (RCPSP) is a well-known problem widely 

studied in the literature. There are several papers that review research for the problem. The 

general work of Brucker et al. (1998) as well as the work of Hartmann & Kolisch (2000) focuses 

on heuristic algorithms to solve the problem. It has been shown by Blazewicz et al. (1983) that 

the RCPSP belongs to the class of NP-hard optimization problems. The RCPSP can be stated as 

follows: A single project consists of  activities where each activity has to be processed in 

order to complete the project. The dummy activities  and  correspond to the project start 

activity and to the project end activity, respectively. The activities are interrelated with two kinds 

of constraints. First, precedence constraints force activity  not to be started before all its 

immediate predecessor activities are finished. Second, the activities require resources with 

limited capacities. There is a set of  resource types. While being processed, activity  requires 

 units of resource type  during every period of its non-preemptable duration, . 

Resource type k has a limited capacity of  at any point in time. The parameters , , and  

are assumed to be non-negative and deterministic; for the project start and end activities, we have 

,  for all . The objective of the RCPSP is to find both precedence and 

resource feasible completion times for all activities such that the makespan of the project is 

minimized. The conceptual decision model of the RCPSP, Kolisch & Hartmann (1999) is given 
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as follows: 

          (1) 

Subject to 

      (2) 

       (3) 

           (4) 

The variable  denotes the finish times of activity , ( ); and , the set 
of activities being in progress in period , is defined as 

. The objective function (1) minimizes the 
completion time of the makespan of the project. Constraints (2) take into consideration the 
precedence relations between each pair of activities , where , the set of activities 
immediately precedes . Finally, constraint set (3) limits the total resource usage within each 
period to the available amount. Constraint (4) is to enforce the project to start at time 0. 

In order to find a schedule, the decoding procedures, so-called Schedule Generation Schemes 

(SGSs), are used. SGS generates the schedule, based on the activity list or the priority list, taking 

into account the availability of the resources and the precedence relationships. SGS starts from an 

empty set of sequenced activities and constructs a schedule by stepwise extension of a partial 

schedule. There are two SGS procedures that are considered the core of most RCPSP heuristics: 

serial SGS (SSGS) and parallel SGS (PSGS). Whereas SSGS performs activity incrementation, 

PSGS performs time-incrementation. For details, refer to Kolisch (1996b).  

The main objective of this paper is to build a genetic algorithm for solving RCPSP. This paper is 

organized as follows: Section 2 presents a literature review of solving RCPSP using genetic 

algorithms. Section 3 presents the proposed algorithm, experimental design and default settings. 

Computational results for validating the algorithm are discussed in section 5. Section 6 is left for 

conclusions and future work. 

 

2. REVIEW OF GENETIC ALGORITHM LITERATURE FOR RCPSP 
Genetic algorithm (GA) was developed by Goldberg (1989) as a computational approach to solve 
hard problems. It mimics the principles of biological evolution to solve hard optimization 
problems. Many researchers have developed different GA algorithms for solving RCPSP 
problem. 

Hartmnn (1998) proposed a GA in which he generated the initial population with two ways, 
randomly and random sampling using latest finish time (LFT) rule and used both serial (SSGS) 
and parallel (PSGS) generation scheme. He used three representations: activity list (AL), priority 
rules and priority value. He used three crossover methods: one-point (1PX), two-point (2PX) and 
uniform crossover (UX); as well as one mutation method, Invert Mutation (INVM) with 
probability Pm = 0.01, 0.05 and 0.1; and four selection methods: proportional, tournament size 2 
(TS-2), tournament size 3 (TS-3) and ranking (RNKS). Three population sizes were used, Ps= 20, 
40 and 50. He tested the three representations and found that AL representation gave the best 
results. He extended his work in Hartmnn (2002). His proposed GA employed the AL 
representation and the two decoding SSGS and PSGS procedures; two priority rules (LFT, LST 
(latest start time)) and a random activity selection method were used for generating the initial 
population. He used two point crossover (2PX), Insert Mutation (INSM), Pm=0.05 and Ranking 
Selection (RNKS), the Proportional Selection as well as the Tournament Selection (TS), and two 
population sizes, 40 and 90. 
Alcaraz & Maroto (2001) developed a GA which used SSGS and an activity list representation 
with scheduling mode (forward/backward) (AL-F/B). A schedule was generated using an 
additional gene which decided whether a forward or backward scheduling needed to be employed 
(F/B gene). To generate the initial population, they have employed a sampling procedure with 
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LFT as the selection rule. They have implemented three different selection mechanisms: 
remainder stochastic sampling without replacement, TS-2 and RNKS; four crossover methods: 
the precedence set crossover (PPX), one point forward–backward crossover (1PX-F/B), two point 
forward–backward crossover (2PX-F/B) and 2PX  developed by (Hartmann 1998) with 
probabilities  and ; two different mutation operators: INSM and INVM with 
probabilities  and ; and two population sizes,  and . 
Debels & Vanhoucke (2005) proposed a genetic algorithm which considered two populations and 
hence was named as Bi-population Genetic Algorithm (BPGA). Both left-justified (forward) 
which sorted activities in the increasing order of the start time and right justified (backward) 
which sorted activities in the decreasing order of the finish times population were considered. 
The default settings of their proposed GA are as follows: randomly generated initial population, 
SSGS, TS-2 and 2PX, with no mutation.  
Franco et al. (2007) have used the following GA: AL representation, randomly generated initial 
population, SSGS, two crossover methods: 1PX and 2PX with probabilities , 

, INVM mutation and  population size 100. 
Toni et al. (2008) developed a GA with the following settings: AL representation, randomly 
generated initial population, two selections: Steady state, tournament size 3 (TS-3), maximum 
number of generations = 300 or maximum number of consecutive generations without best 
solution improvement = 50, Uniform crossover (UX) with probability  and swap 
mutation (SWM) with probability Pm=0.05. 
Cervantes et al. (2008) developed a steady-state genetic algorithm that used a dynamic 
population, i.e. the algorithm started with a determined number of individuals and as the search is 
progressing, the size of the population grows. They increased the population size by 25% of the 
previous population size each time that 1000 new schedules have been evaluated. They used the 
activity list (AL-F/B) representation, both serial and parallel SGS in two directions forward (F) 
and backward (B), initial population generated using priority rules, TS-2, 2PX crossover with 
probability , and Insert Mutation (INSM) with probability . 
Valls et al. (2008) suggested a hybrid genetic algorithm  (HGA) with activity list (AL-F/B) 
representation, the initial population obtained using the LFT priority rule, serial SGS in two 
directions: forward and backward, peak crossover (PeX) with probabilities  and 0.9, 
INVM mutation with probability , and RNKS selection. The values of POP size 
selected were Ps = 24, 50, 100,200, and 400.  
 
Klimek (2010) proposed a GA which used the following settings: AL representation, randomly 
generated initial population, SSGS, population size , roulette wheel selection (RWS) and 
tournament selection (TS), three crossover operators: 1PX, 2PX and PPX with probability (Pc = 
0.7), four mutation operators: INVM, Swap adjacent (SADM), SWM, and INSM with probability 

; elite size was equal to 0 (no elitist) or 2 (two elite chromosomes) , and maximal 
number of generations = 100. 
Diana et al. (2013) proposed a GA which used binary-string-based representations, randomly 
generated initial population with size , SSGS decoding procedure, roulette wheel 
selection (RWS), one point binary crossover (1PX-B) with probability  and binary 
mutation (BM) with probability . 
Table 1 shows a summary of different GAs used in solving RCPSP problem. The table 
summaries each study as follows: authors, publication year, problem representation, how initial 
population is generated, the SGS employed, the stop criterion, operators and parameters used. 

 
3. Proposed Algorithm 
The good performance of a genetic algorithm depends on the selection of a good combination 

of GA operators and parameters. Based on the literature review and Table 1, four selection 
methods, five crossover operators and four mutation operators are used in designing different 
genetic algorithms for solving RCPSP as shown in Table 2.   
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Table 1: Summary of the genetic algorithms used for solving RCPSP 

Author year 

Solution 

representation 

(Encoding) 

Initial 

population 

generation 

Evaluatio

n (SGS) 
Stop criterion 

Operators Parameters 

Mutation  Crossover Selection method 

Mutation 

probability 

(Pm) 

Crossover 

probability 

(Pc) 

Popul

ation 

Size 

(PS) 

J.Alcaraz 

and 

C.Maroto 

2001 1. The standard 

activity list. 

2. Activity list with 

scheduling mode. 

Priority rule 

(LFT). 

Serial   1.Insert 

2.Invert 

1- Precedence 

Crossover. 

2- One point F/B 

Crossover 

3- Two point F/B 

crossover. 

4- Two point 

crossover. 

1- Remainder 

stochastic 

sampling without 

replacement. 

2- Tournament.(2-

tour) 

3- Ranking. 

0.05 

0.01 

0.5 

0.8 

50 

100 

Mariamar 

and  

Antonio etl 

 

 

 

  

2008 

Activity list Priority 

rules 

 

Serial, 

parallel 

When no 

improvement is 

achieved in two 

consecutive BF 

iterations 

Insert Two-point crossover 2- Tournament 0.05 0.8 Increa

sing 

with 

25% 

S Diana,L 

Ganapathy.e

tl 

 2013 Activity list Randomly Serial  When number 

of Generation as  

500 

Binary Mutation One-point Binary 

crossover 

Roulette wheel .95 .95 200 

Marcin  

Klimek 

 

2010 

Activity list Randomly Serial, 

parallel 

Maximal 

number of 

generations = 

5000 schedules 

1- Invert 

2- Swap 

1. 3-Swap 

Adjacent 

2. 4-Insert 

-One-point 

,Two point 

,Precedence  

Crossover 

1-Roulette wheel 

2- Tournament 

0.2 0.7 50 

Toni 

Frankola.M

arin 

Golub,etl 

 

2008 

Priority value Randomly  Maximum 

number of 

generations 

(300) or 

maximum 

number of 

consecutive 

generations 

without best 

solution 

improvement50 

swap Uniform vector 

crossover 

Steady state, 

tournament 

0.05 0.5 500 

Franco,EG,e

tl 

2007 Activity list Randomly serial  Invert One-point, 

Two point 

Elitist  0.7 

0.3 

100 

Sonke 

hartmann 

 

1997 

Activity list, priority 

value, priority rule 

Randomly, 

priority 

rules, 

priority 

value 

Serial, 

parallel 

 Adjacent 

 

 

 

 

One point 

,Two point, 

Uniform crossover 

 

1-Ranking 

2-Proportional 

0.05,0.01,0.1

0 

 40 

Sonke  

hartmann 

 

2001 

Activity list Randomly, 

priority rule 

(LFT&LST) 

Serial, 

parallel 

Not more than 

5000 

Swap adjacent Two-point  Ranking, 

proportional, 

tournament 

0.05  40 ,90 

Vicente,fran

cisco,etl 

2007  Random 

sampling 

(LFT) 

Serial, 

parallel 

Maximum no. 

of schedules 

equal5000 

invert Peak crossover Ranking 0.05 .9 24,50,

100,20

0 ,400 

Edgar,Ferna

ndo,etc 

 Activity list Randomly 

 

serial  Adjacent 

 

One-point 

Two-point 

 0.7 0.3 100 
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Table 2: selection, crossover and mutation methods used in RCPSP 

Method Code 

S
el

ec
ti

o
n

 

Random Selection RNDS 

Roulette Wheel Selection RWS 

Ranking Selection RNKS 

Tournament Selection (tour size = 2) TS-2 

Tournament Selection (tour size = 3) TS-3 

Tournament Selection (tour size = 4) TS-4 

Tournament Selection (tour size = 5) TS-5 

C
ro

ss
o

v
e

r 

One point crossover 1PX 

Two point crossover 2PX 

Uniform crossover UX 

Peak crossover PeX 

M
u

ta
ti

o
n

 Invert Mutation INVM 

Insert Mutation INSM 

Swap Mutation SWM 

Swap Adjacent Mutation SADM 

4.1 Experimental design 

For selecting best candidate GA, a full factorial experiment was designed with three 

operators, selection methods (Sm), crossover methods (Cm) and mutation methods (Mm), as 

shown in Table 2. Where there are seven selection methods (random, roulette wheel, ranking 

and tournament with four sizes), four crossover methods and four mutation methods. In 

addition, two evaluation methods (Ev), SSGS and PSGS, were used. The GA depends also on 

the following parameters: population size (Ps), crossover probability (Pc) and mutation 

probability (Pm). The proposed values for these parameters are listed in Table 3. Therefore, 

the total number of combinations of operators and parameters 

 

Table (3) GA proposed parameter 

Parameter/operator Value/code 

Population size 10, 20, 30, 40, 50, 80 

No. of generation 5000 

Mutation probability 0, 0.02, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, 0.25, 0.3 

Crossover probability 0.0, 0.1,0.2,0.3,0.4,0.5, 0.6,0.7 0.8,0.9,1.0 

Evaluation method SGS, PGS 

The implementation model of the proposed experiment is coded using C# language 

(Microsoft Visual Studio 2010). The experiment is applied on the first problem (J30_1.rcp) 

of J30 set available in the Project Scheduling Problem Library PSPLIB
1
. For the purpose of 

brevity, the computational results and the statistical analysis show that the following settings 

give the best minimum deviations from the optimal makespan, five selection methods 

{RNDS, RWS, RNKS, TS-2, and TS-4}, three crossover methods {2PX, UX, and PeX}, 

three mutation methods {INV, IINS, and SADM}, three crossover probabilities {0.6, 0.7, and 

0.8}, two Evaluations {SSGS and PSGS}, one population size Ps = 50 and three mutation 

                                                           
1
 Download datasets: http://www.bwl.uni-kiel.de/Prod/psplib/ 

http://www.bwl.uni-kiel.de/Prod/psplib/


 

 
SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM USING GENETIC ALGORITHM 

 

probabilities {0.15, 0.2, and 0.25}. From the results, the second experiment shown in Table 4 

is tested on the first ten problems of J60 PSPLIB (60 activities each). 5 runs and 5000 

generations per run are used for solving each problem. The performance measure used is the 

percentage of getting the best known solution as shown in Figure 1. Based on Table 4, we 

have the following 

combinations . 

Table (4): Operators and parameters settings for second experiment  

Parameter/ operator Value/Code 

Selection method RNDS, RWS, TS-2, TS-4, 

RNKS 

Crossover method 2PX, UX, PeX 

Mutation method INVM, INSM, SADJM 

Crossover probability 0.6, 0.7, 0.8 

Mutation probability 0.25, 0.2, 0.15 

Population size 50 

No. of generations 5000 

Evaluation method SSGS, PSGS 
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Figure 1: Impact of different GA’s operators and parameters 

4.2 Impact of GA’s operators/parameters  
The experiment results are shown in Figure 1 for each operator and parameter mentioned in Table 4. The 

charts in the figure show the following: for the selection methods, the linear ranking method (RNKS) 
outperforms the others. However, TS-2 and TS-4 are on average doing well, while roulette wheel method 
gives the worst performance. The two point crossover (2PX) outperforms the UX and PeX methods and 
the crossover probability Pc=0.7 gives better performance than the other two values, 0.6 and 0.8. Insert 
mutation (INSM) is better than INVM and SWM, while the mutation probability Pm = 0.25 is the best. 
Regarding the evaluation method, it is observed that the SSGS is better than PSGS.  
 

4.3 Default settings 
It is clear from the above section that the GA settings shown in Table 5 give the best 

performance. Therefore, the default settings of these values provide the proposed GA. 
 

Table 5: Proposed GA settings (Default Values) 

Operator/Parameter Type / Value 

Selection Method Linear Rank method(RNKS) 

Crossover Operator Method Two point Crossover (2PX) 

Mutation Operator Method  Insert mutation (INSM) 

Crossover Probability 0.7 

Mutation Probability 0.25 

Population size 50 

5 COMPUTATIONAL RESULTS 
5.1 Test Design 

For validating the proposed algorithm, we have taken three standard sets of RCPSP instances from 
the literature constructed by the project generator ProGen of Kolisch, et al. (1995). These instance sets are 
open source as mentioned earlier. The first two sets, J30 and J60, contain 480 instances with 30 and 60 
activities per project, respectively. The third one, J120, consists of 600 instances with 120 activities. For 
the purpose of comparison, we have selected 1000, 5000 and 50000 schedules as stopping criteria and the 
two SGS are applied. 
 

5.2 Computational results 
The experiments have been performed on Dell XPS L502X (i7 – 2630 QM CPU 2GHz, 8 GB RAM). 

The computational results of the three sets are as shown in Table 6. For the J30 set, the results are given in 
terms of average deviation from the optimal solution. For the other two sets, some of the optimal 
solutions are unknown. Thus, the average deviation from the well-known critical path-based lower bound 
is reported. From table 6, it can be seen that the deviation values increase as the size of the problem 
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increase. This means that the RCPSP with larger scale is more difficult to solve since the problem is NP-
hard problem. In addition, for each set of problems, the deviation values decrease as the maximum 
number of schedules increase. It shows that the proposed algorithm can keep finding better results as 
more schedules are explored. Also, it is observed that the serial SGS outperforms the parallel SGS on 
small problems and it is doing on average as well as it in large ones. 

Table 6: Average deviation (%) from optimal or lower bound makespan for J30, J60 and J120 

Problem set SGS Max # of Schedule 

  1000 5000  50000 

J30 Ave. OPT. Dev Serial 0.50% 0.18% 0.12% 

Parallel 1.36 1.25 1.13 

J60 Ave .LB. Dev Serial 13.43 12.61  11.77 

Parallel 13.43 13.08 12.6 

J120 Ave. LB. Dev Serial 37.25 34.54  32.03 

Parallel 37.18 34.49 32.93 

The results for the three instance sets are also compared with the results of 28 existing algorithms from 
the literature as shown in Tables 7, 8 and 9 respectively. Each algorithm is briefly described by a few 
keywords, the SGS employed, and the reference. Also as mentioned above, the results are given in terms 
of average deviation from the optimal solution for the J30 set shown in Table 7, and in terms of the 
average deviation from the well-known critical path-based lower bound for the other two sets shown in 
Tables 8 and 9. The methods are sorted with respect to the results for 50,000 schedules and then for 
5,000.  

Table 7: Average deviation (%) from optimal makespan — ProGen set J=30 

Algorithm  SGS Reference  Max. #schedules 

   1000 5000 50,000 

GA, TS — path relinking  Both  (Kochetov & Stolyar (2003)) 0.1% 0.04% 0% 

Scatter Search—FBI  Serial  (Debels et al. (2003)).  0.27 0.11 0.01 

ACOSS  (Chen et al. (2010)) 0.14 0.06 0.01 

GAPS  (Mendes et al. (2009)) 0.06 0.02 0.01 

GA — hybrid, FBI  Serial  (Valls et al. (2008))  0.27 0.06 0.02 

GA — FBI  Serial  (Valls et al. (2005)) 0.34 0.2 0.02 

GA — forw.–backw., FBI  Both  (Alcaraz et al. (2003))  0.25 0.06 0.03 

GA — forw.–backw.  Serial  (Alcaraz & Maroto (2001))  0.33 0.12 – 

ABC-RK  (Shi et al. (2010)) 0.35 0.12 0.04 

Sampling — LFT, FBI  Both  (Tormos & Lova (2003b)) 0.25 0.13 0.05 

TS — activity list  Serial (Nonobe & Ibaraki (1998))  0.46 0.16 0.05 

Sampling — LFT, FBI  Both  (Tormos & Lova (2001)) 0.3 0.16 0.07 

GA — self-adapting  Both  (Hartman, (2002)) 0.38 0.22 0.08 

GA — activity list  Serial (Hartmann (1998)) 0.54 0.25 0.08 

Sampling — LFT, FBI  Both (Tormos & Lova (2003a)) 0.3 0.17 0.09 

Sampling — random, FBI  Serial (Valls et al. (2005)) 0.46 0.28 0.11 

THIS STUDY Serial  0.5 0.18 0.12 

SA — activity list  Serial (Bouleimen & Lecocq (2003)) 0.38 0.23 – 

GA — late join Serial (Coelho & Tavares (2003)) 0.74 0.33 0.16 

Sampling—adaptive  Both (Kolisch & Drexl (1996)) 0.74 0.52 – 

GA—random key  Serial (Kiel & Hartmann (1997)) 1.03 0.56 0.23 

Sampling—LFT  Serial (Kolisch (1996b))  0.83 0.53 0.27 

Sampling—global  Serial (Coelho & Tavares (2003)) 0.81 0.54 0.28 

Sampling—random  Serial (Kolisch (1995)) 1.44 1 0.51 

GA—priority rule  Serial (Hartmann (1998)) 1.38 1.12 0.88 

Sampling—WCS  Parallel (Kolisch, (1996a, b)) 1.4 1.28 – – 

Sampling—LFT  Parallel (Kolisch, (1996b)) 1.4 1.29 1.13 

THIS STUDY Parallel  1.36 1.25 1.13 

Sampling—random  Parallel (Kolisch (1995)) 1.77 1.48 1.22 

GA—problem space  
Mod. 

par. 
(Leon & Ramamoorthy (1995)) 2.08 1.59 – 
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From Tables 7 to 9, it is observed that the proposed algorithm with serial SGS is capable of getting 
good results compared by the other algorithms. With 50,000 schedules among all the 28 
algorithms for J30, J60 and J120, the algorithm with serial SGS ranks 17th, 17th and 7th 
respectively. In case of J30, the gap between our algorithm and the best one is 0.44% with 
1000 schedules, 0.16% with 5000 schedules and 0.12% with 50,000 schedules. For data set 
J120, our algorithm is the 7th best with 50,000 schedules, where the gap between it and the 
best one is 3.18% with 1000 schedules, 2.06% with 5000 schedules and 1.47% with 50,000 
schedules. As observed, the gap decreases as the number of schedules increases and the order 
of the algorithm improves as increasing the problem size. So, the proposed algorithm 
considers an effective and competitive in solving the RCPSP with medium and large scales. 
In addition, the performance of parallel SGS is not competitive comparing with the rest of 
algorithms.   

 
Table 8: Average deviations (%) from critical path lower bound — ProGen set J = 60 

Algorithm  SGS Reference  Max. #schedules 

   1000 5000 50,000 

ACOSS  (Chen et al. (2010))  11.75% 10.98% 10.66% 

Scatter search — FBI Serial (Debels et al. (2003)). 11.73 11.1 10.71 

GA — hybrid, FBI Serial (Valls et al. (2008)) 11.56 11.1 10.73 

GA, TS — path relinking Both (Kochetov & Stolyar (2003)) 11.71 11.17 10.74 

GA — FBI Serial (Valls et al.( 2005)) 12.21 11.27 10.74 

GAPS  (Mendes et al. (2009)) 11.72 11.04 10.67 

GA — forward–backward, 

FBI 
Both (Alcaraz et al. (2003)) 11.89 11.19 10.84 

ABC-RK  (Shi et al. (2010)) 12.75 11.48 11.18 

GA — self-adapting Both (Hartmann (2002)) 12.21 11.7 11.21 

GA — activity list Serial (Hartmann (1998)) 12.68 11.89 11.23 

Sampling — LFT, FBI Both (Tormos & Lova (2003b)) 11.88 11.62 11.36 

Sampling — LFT, FBI Both (Tormos & Lova (2003a)) 12.14 11.82 11.47 

GA — forward–backward Serial (Alcaraz & Maroto (2001)) 12.57 11.86 – 

Sampling — LFT, FBI Both (Tormos & Lova (2001) 12.18 11.87 11.54 

SA — activity list Serial (Bouleimen & Lecocq (2003)) 12.75 11.9 – 

TS — activity list Serial (Nonobe & Ibaraki (1998)) 12.97 12.18 11.58 

THIS STUDY Serial  13.43 12.61 11.77 

Sampling — random, FBI Serial (Valls et al. (2005)) 12.73 12.35 11.94 

GA — late join Serial (Coelho & Tavares (2003)) 13.28 12.63 11.94 

GA — random key Serial (Hartmann (1998)) 14.68 13.32 12.25 

GA — priority rule Serial (Hartmann (1998)) 13.3 12.74 12.26 

THIS STUDY Parallel  13.43 13.08 12.5 

Sampling — adaptive Both (Kolisch & Drexl (1996)) 13.51 13.06 – 

Sampling — WCS Parallel  (Kolisch (1996a, b)) 13.66 13.21 – 

Sampling — global Serial (Coelho & Tavares (2003)) 13.8 13.31 12.83 

Sampling — LFT  Parallel (Kolisch (1996b)) 13.59 13.23 12.85 

GA — problem space Mod. par. (Leon & Ramamoorthy (1995)) 14.33 13.49 – 

Sampling — LFT Serial (Kolisch (1996b)) 13.96 13.53 12.97 

Sampling — random Parallel (Kolisch (1995)) 14.89 14.3 13.66 

Sampling — random Serial (Kolisch (1995)) 15.94 15.17 14.22 



 

 
SOLVING RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM USING GENETIC ALGORITHM 

 
Table 9: Average deviations (%) from critical path lower bound — ProGen set J = 120 

Algorithm  SGS Reference  Max. #schedules 

   1000 5000 50,000 

ACOSS  (Chen et al. (2010)) 35.19% 32.48% 30.56% 

GA — hybrid, FBI Serial (Valls et al. (2008)) 34.07 32.54 31.24 

GAPS  (Mendes et al. (2009)) 35.87 33.03 31.44 

GA — forward–backward, FBI Both (Alcaraz et al. (2003)) 36.53 33.91 31.49 

Scatter Search — FBI  Serial (Debels et al. (2003)) 35.22 33.1 31.57 

GA — FBI Serial (Valls et al. (2005)) 35.39 33.24 31.58 

THIS STUDY Serial  37.25 34.54 32.03 

GA, TS — path relinking Both (Kochetov & Stolyar (2003)). 34.74 33.36 32.06 

Population-based — FBI Serial (Valls et al. (2005)) 35.18 34.02 32.81 

THIS STUDY Parallel  34.7 34.49 32.93 

GA—self-adapting Both (Hartmann (2002)) 37.19 35.39 33.21 

ABC-RK  (Shi et al. (2010)) 36.29 34.18 33.69 

Sampling—LFT, FBI Both (Tormos & Lova (2003b)) 35.01 34.41 33.71 

GA — activity list Serial  (Hartmann (1998)) 39.37 36.74 34.03 

Sampling — LFT, FBI  Both  (Tormos & Lova (2003a)) 36.24 35.56 34.77 

Sampling — LFT, FBI Both (Lova & Tormos (2001)) 36.49 35.81 35.01 

GA — forward–backward Serial (Alcaraz & Maroto (2001)) 39.36 36.57 – 

TS — activity list Serial (Nonobe & Ibaraki (1998)) 40.86 37.88 35.85 

GA — late join Serial (Coelho & Tavares (2003)) 39.97 38.41 36.44 

Sampling — random, FBI Serial (Valls et al. (2005)) 38.21 37.47 36.46 

SA — activity list Serial (Bouleimen & Lecocq (2003)) 42.81 37.68 – 

GA — priority rule Serial (Hartmann (1998)) 39.93 38.49 36.51 

Sampling — LFT Parallel  (Kolisch (1996b)) 39.6 38.75 37.74 

Sampling — WCS Parallel (Kolisch (1996a, b)) 39.65 38.77 – 

GA — random key  Serial (Hartmann (1998)) 45.82 42.25 38.83 

Sampling — adaptive Both  (Kolisch & Drexl (1996)) 41.37 40.45 – 

Sampling — global Serial (Coelho & Tavares (2003)) 41.36 40.46 39.41 

GA — problem space Mod. par.  (Leon & Ramamoorthy (1995)) 42.91 40.69  – 

Sampling — LFT  Serial (Kolisch (1996b)) 42.84 41.84 40.63 

Sampling — random Parallel (Kolisch (1995) 44.46 43.05 41.44 

Sampling — random  Serial (Kolisch (1995)) 49.25 47.61 45.6 

 
6. CONCLUSIONS AND FUTURE WORK 
This paper, presents a genetic algorithm based heuristic for the classical resource-constrained 
project scheduling problem. The computational experiments on a large set of standard test 
instances have shown that the proposed algorithm leads to better results than several heuristic 
approachs from the literature. The algorithm is capable of providing near-optimal solutions for a 
large scale RCPSP. Impact of the project network topology on the performance of serial and 
parallel SGS will be considered in the future work. 
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