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 ABSTRACT  

 
Brain-computer interfaces (BCIs) are a growing field of science that allows direct connection 

between the brain and outside machinery, bypassing conventional motor pathways like muscles 

and nerves. Motor function may be lost completely or partially as a result of spinal cord injuries 

(SCIs), leading to difficulties with walking, balance, and coordination. This literature review 

delves into the extensive research conducted over the past decades on BCIs and their application 

in assisting individuals with SCIs. The study encompasses a comprehensive analysis of the 

advancements made in BCI research; it explores the evolution of BCI technology, highlighting 

key milestones and breakthroughs that have shaped its development. Additionally, the paper 

sheds light on the various methodologies employed in BCI systems, such as invasive, non-

invasive, hybrid, motor control, and sensory feedback approaches, specifically focusing on their 

applicability to SCIs. This review emphasises the challenges encountered during the 

implementation of BCIs for SCI individuals. These challenges encompass technical limitations, 

signal processing complexities, and the need for robust and reliable interfaces. Moreover, the 

study explores the adoption of BCIs; it provides insights into potential solutions to address these 

limitations and presents a forward-looking perspective by discussing the future trends in BCI 

research. It identifies emerging technologies, neural networks, and neuroprosthetics, which hold 

great promise in enhancing the performance and usability of BCIs. Moreover, the paper examines 

the potential of neurorehabilitation and neuroplasticity to augment the effectiveness of BCIs for 

spinal cord-injured individuals. In conclusion, this paper provides a synthesis of the past 53 years 

of BCI research, specifically focusing on its application for SCIs. By highlighting the challenges 

faced and future trends in BCI technology, this paper contributes to the exploration of innovative 

solutions that can unlock new possibilities and offer renewed hope for SCIs. 
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 الملخص 

الًتصال المباشر بين الدماغ والأجهزة الخارجية، متجاوزة المسارات  بمجالًا علمياا متنامياا يسمح   (BCIs) تعد واجهات الدماغ والحاسوب
إلى فقدان جزئي أو كامل للوظيفة الحركية،   (SCIs) الحركية التقليدية مثل العضلات والأعصاب. يمكن أن تؤدي إصابات النخاع الشوكي

مما يؤدي إلى صعوبات في المشي والتوازن والتنسيق. تتعمق مراجعة الأدبيات هذه في البحث المكثف الذي تم إجراؤه على مدار العقود  
وتطبيقها في مساعدة الأفراد الذين يعانون من اصابات النخاع الشوكي. تتضمن الدراسة تحليلاا شاملاا للتقدم المحرز في  BCIs الماضية حول

، ويسلط الضوء على المعالم الرئيسية والإنجازات التي شكلت تطورها. بالإضافة إلى ذلك، BCI ؛ فهو يستكشف تطور تكنولوجياBCI أبحاث
لجراحية والهجينة والتحكم الحركي ، مثل الأساليب الجراحية وغير اBCI تلقي الورقة الضوء على المنهجيات المختلفة المستخدمة في أنظمة

ي  والتغذية الراجعة الحسية، مع التركيز بشكل خاص على إمكانية تطبيقها على اصابات النخاع الشوكي. تؤكد هذه المراجعة على التحديات الت
لمصابى النخاع الشوكي. تشمل هذه التحديات القيود التقنية وتعقيدات معالجة الإشارات والحاجة إلى واجهات  BCIs تمت مواجهتها أثناء تنفيذ

؛ فهو يوفر نظرة ثاقبة للحلول المحتملة (BCIs) قوية وموثوقة. علاوة على ذلك، تستكشف الدراسة اعتماد واجهات التواصل بين الأشخاص
ا تطلعياا من خلال مناقشة الًتجاهات المستقبلية في أبحاث تقنيات الناشئة، مثل التعلم الآلي،  وهو يحدد ال .BCI لمعالجة هذه القيود ويقدم منظورا

بين   التواصل  استخدام واجهات  أداء وسهولة  تعزيز  في  الكبير  بالخير  تبشر  والتي  العصبية،  العصبية، والأطراف الًصطناعية  والشبكات 
للأفراد المصابين   BCIs علاوة على ذلك، تبحث الورقة في إمكانية إعادة التأهيل العصبي والمرونة العصبية في زيادة فعالية .(BCIs) الدماغ

ا للـ   ا الماضية من أبحاث  53في النخاع الشوكي. في الختام، تقدم هذه الورقة ملخصا ، مع التركيز بشكل خاص على تطبيقها في BCI عاما
تساهم هذه الورقة   ،  BCIاصابات النخاع الشوكي. من خلال تسليط الضوء على التحديات التي تواجهها والًتجاهات المستقبلية في تكنولوجيا

 .SCI في استكشاف الحلول المبتكرة التي يمكن أن تفتح إمكانيات جديدة وتوفر أملاا متجدداا لـ

1. Introduction 

The main focus of this review is to provide insight into how BCIs have evolved in assisting 

SCIs, examine the conditions of the field, and address potential future trends in BCI development. 

From an evolutionary standpoint, BCIs have undergone significant advancements since their 

inception. Initially, early BCI systems focused on basic motor control, aiming to restore movement 

to paralysed limbs. These systems employed invasive techniques, such as intracortical implants, to 

decode neural activity and convert it to commands for prosthetic devices. While these invasive 

approaches demonstrated promising results, they presented challenges related to surgical 

procedures, long-term stability, and scalability.  

The increasing number of surgical procedures and an ageing  human population lead to an 

annual increase in the number of biomedical devices implanted. There are risks when the body 

contains foreign substances that might result in issues that are difficult to identify until irreversible 

harm has been done, despite the tremendous advantages of implants. Enhancements of implanted 

sensors might make it possible to identify even minute alterations in the surrounding tissues or 

implants immediately, enabling the provision of early cues for action in order to solve this obstacle 

[1]. 

The integration of implants with embedded sensors will allow for real-time monitoring and 

enhance implant performance. As implanted electrodes can deteriorate over time and need frequent 

maintenance or replacement, it is also critical to address the issues linked to their resilience and 

longevity. This includes enhancing the ratio of signal to noise in recording neural signals and 

improving the decoding algorithms for better interpretation of intentions and commands. 

Additionally, it is vital to overcome these obstacles related to the durability and longevity of 

implanted electrodes, as they can degrade over time and require regular maintenance or 

replacement [2].  

By using electronic stimulation of the paralysed or artificial limbs, neuroprosthetic devices 

which are still in development today help survivors restore their capacity to walk independently. 

Since nervous system illnesses also impact the economy and wider social contexts, 

neuroprosthetics might ultimately be advantageous to society [3]. 
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SCI had a prevalence of 1 injury per 1000 persons worldwide in 2014 and an incidence of 

four to nine new injuries per one hundred thousand people each year [4]. The most frequent causes 

of traumatic SCI include falls, traffic incidents, and violent acts. Researchers found that there were 

approximately 1 million new cases of SCI per year and over 27 million prevalent cases of SCI 

worldwide as of 2016 [5]. Over the past 20 years, both the fraction of non-traumatic injuries and 

the average age of SCI onset have considerably grown. 

The brain sends motor signals to contract muscles at certain joints to plan and coordinate 

movement. These messages originate in the brain and pass along descending spinal cord pathways 

to effective motor neurons, which then send the orders to the destination muscles. Damaging of 

these pathways in  SCI may result in paralysis below the lesion site. Nonetheless, peripheral nerves, 

the muscles they affect, and the brain's planning and coordination centres continue to operate [6]. 

The spinal cord (SC) is split longitudinally into segments and is situated in the canal around the 

SC, which the vertebral bones of the spine encircle. Spinal nerve roots emerge dorsally and 

ventrally from the spinal canal in between segments. The striated muscles in the upper or lower 

limbs are innervated by more than one ventral nerve root, whereas multiple ventral nerve roots 

innervate the striated muscles in the upper and lower limbs [7]. 

 Based on the level at which the nerve roots exit the spinal cord, the SC is divided into eight 

segments: eight cervical from C1 to C8, twelve thoracic from Th1 to Th12, five lumbar from L1 to 

L5, five sacral from S1 to S5, and one coccygeal segment. More body segments are affected in 

proportion to the degree of rostral (or greater) SCI [8]. 

Tetraplegia, a disorder typically associated with SCI, is the deterioration that impacts the 

arms, trunk, and legs' motor and sensation capacities. It is a condition characterised by  paralysis 

or significant impairment in the function of all four limbs (both arms and both legs). A patient who 

has a degree of lesion of C5 or higher could require artificial ventilation for breathing support. This 

is a medical device that helps people breathe when they are unable to do so on their own or require 

assistance to maintain adequate breathing. As a result of a thoracic or lumbar SCI, sensory or motor 

deficits, or both of them, in the legs and frequently the trunk culminate in paraplegia. Sexual, 

digestive, and bladder functions are all impacted by SCI. 

After SCI, neuroprosthetics can help recover motor function by directly stimulating the 

muscular-nervous system with electricity. Unluckily, standard neuroprosthetic approaches are 

limited by a number of issues, including mechanical coupling, inadequate description of the 

dynamics of nonlinear input as well as output sets, large device size, high power consumption, and 

the quick onset of muscle fatigue. By combining sensor-based input from the surroundings and the 

state of the system's functioning with brain-based command signals, a wireless multi-channel 

closed-loop neuroprosthesis may be able to improve device performance and, in turn, the quality 

of life for people with SCIs [9]. 

2. Problem Formulation  

The spinal cord passes from the brainstem to the lumbar of the backbone. It is a long, 

thin,and tubular bundle of nerve tissue. It is a crucial part of the CNS shielded by the bony vertebrae 

[10], as illustrated in Figure 1. Information about sensation and movement is sent via SC to the 

body. Sensory information, such as touch, temperature, and pain, is transmitted from the peripheral 

nervous system to the SC, where it is relayed to the brain for processing [11]. 
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Motor information, such as muscle contractions and movement, is transmitted from the 

brain to the SC, where it is relayed to the muscles and other effector organs [12], as shown in 

Figure 2 in the nervous system. There are two types of matter in the spinal cord: grey matter, which 

is made up of neuronal cell bodies, and white matter, which is made up of the tract-organised axons 

of neurons. The information that travels along the pathways between the various spinal cord areas 

and the brain is sent [13]. 

Regeneration of the white and grey matter in the SC is complex and often faces significant 

challenges. Unlike certain other tissues in the body, the CNS has limited regenerative capacity [14]. 

The three primary components of a neuron are the axon, dendrites, and cell body (soma). The 

nucleus and other vital organelles are located in the cell body, while the dendrites are the branch-

like extensions that receive incoming signals from neighbouring neurons. The axon, on the other 

hand, transports the electrical impulses outside of the cell, facilitating communication with other 

neurons or target cells. The axon may be surrounded by a myelin sheath, as shown in Figure 4, a 

protective layer that enhances signal conduction speed. 
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Depending on the position and depth of the injury, SCIs can cause a variety of motor and 

sensory deficits. Trauma like a car crash or a fall, as well as illnesses like multiple sclerosis or 

amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease that affects the nerve 

cells in charge of regulating voluntary muscle movement, can result in SCIs [15], as illustrated in 

Figure 3. There are two main categories of SCI: traumatic injuries and non-traumatic injuries. 

Traumatic injuries are those that result from incidents in which an individual was injured by a factor 

external to their bodies, such as a car accident, a fall, or an activity-related injury, while non-

traumatic injuries are those caused by pathological abnormal lesions of the spinal cord (such as a 

tumour, infection, or inflammatory condition) [16]. 

 

 
  

 

Understanding spinal cord injuries and mobility challenges Individuals often face 

significant challenges when it results in difficulties with walking, balance, and coordination [17].  

 

Figure 2: Human Nervous System. 

Figure 3: Amyotrophic Lateral Sclerosis. 
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Individuals with SCIs can experience a range of mobility challenges, depending on the 

degree and severity of their injury. Studies have shown that BCIs have the potential to assist 

individuals with SCIs in regaining mobility and improving their quality of life [18]. BCIs allow for 

direct brain-to-machine communication, obviating the need for traditional motor channels like 

muscles and nerves. BCIs provide new opportunities by converting patterns of brain activity into 

orders that run external devices [19]. Real-time, two-way connections are established between 

artificial actuators and human brains using BCIs. by combining techniques, ideas, and concepts 

from engineering, computer science, and neurophysiology [20]. 

Its work may alter either temporarily or continuously as a result of SCI. Any segment of the 

SC may sustain a full or partial injury, which means that some nerve signals may still get through 

the damaged area of the cord and reach the sacral S4-5 spinal cord segments [21]. Lower sacral 

segment sensory and motor functions are completely lost in full SCIs. Individuals suffering from 

recurrent quadriplegia due to high cervical SCI may find that functional electrical stimulation 

(FES), sometimes referred to as coordinated electrical stimulation of peripheral nerve systems and 

muscles, helps them regain movement in their limbs [22]. 

Patients who have suffered SCI are frequently told that no medical treatments or cell 

transplants have been authorised to repair the harm caused and regain voluntary movement [23]. 

In particular, the arm and hand are of utmost importance. There was little investigation of fresh 

neurophysiological techniques for gathering extensive brain activity. The traditional aims are the 

following: In order to regain feelings and movements for people who suffer from severe 

impairments, it is first necessary to uncover and use the working principles and neuroplasticity of 

distributed and dynamic brain networks [24]. BCIs have been shown to activate neuroprosthetic 

devices that can restore neurological functions in individuals with post-traumatic SCI. By recording 

and interpreting electrical signals from the brain, BCIs can enable individuals to generate mental 

images of movements and utilise these signals to control external devices, allowing individuals 

with SCIs to regain control over their mobility or improve some degree of independence using this 

assistive technology [25]. 
 

3. Brain Activities Frequencies’: 

Capability and Subjective actions or changes in blood flow have the ability to cause a 

variety of brain functions. Monitoring electrophysiological signals might be used to immediately 

record such actions: 

[1] One of the most used techniques is electroencephalography (EEG). 

Figure 4: Myelin of the neuron. 
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[2] Electrocorticography (ECOG). 

[3] Recordings from a single neuron. 

[4] Magnetic-resonance-imaging-(MRI). 

[5] Positron-emission-tomography. 

[6] Functional magnetic resonance imaging (FMRI). 

[7]  Optical imaging (also known as fNIR or functional near-infrared) [26]. 

The brain exhibits different frequencies of electrical activity, which can be measured using 

EEG. The brain activity frequencies are typically categorised into several bands, as illustrated in 

Figure 5. Here are the commonly recognised frequency ranges: 

             Delta waves (0 to 4 Hz): It’s the lowest brain wave;, it’s related to deep sleep, 

unconsciousness, and some abnormal brain states. 

             Theta waves (4 to 7 Hz): Theta waves are present during light sleep, deep relaxation, 

meditation, and dreaming. They are also associated with creative thinking and memory processes. 

             Alpha waves (8 to 12 Hz): Alpha waves are prominent when someone is calmly awake and 

has their eyes closed. They are related to mental states of serenity and relaxation. 

             Beta waves (12 to 30 Hz): Beta waves are typically observed when a person is awake and 

engaged in mental activity, such as focused thinking, problem-solving, and active concentration. 

             Gamma waves (30 to 100 Hz and more): The fastest brain waves, or gamma waves, are 

connected to highly advanced mental processing, perception, and information binding. They have 

been linked to attention, memory, and consciousness [27]. 

 

 
  

 

The  technology behind BCIs is still in its infancy and has to be improved upon to ensure 

dependable and precise functioning. To better read intentions and orders, this also entails 

decreasing the impact of the artifact ratio by filtering the noise while capturing brain impulses and 

upgrading the decoding algorithms [28]. 

4. General Classification of BCIs 

 BCIs come into a variety of categories based on various factors. Here's a general 

classification such as surgical or invasive, non-invasive, hybrid, motor control, and sensory 

feedback in the past decades and upgraded BCIs as follows: 

           The concept of BCIs originated in the 1970s, primarily through the work of Dr. Jacques 

Vidal. He conducted experiments that demonstrated the potential for brain-computer contact to 

occur directly. These early prototypes focused on basic tasks like controlling cursor movements on 

Figure 5: EEG bands 

Bands. 
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a screen through brainwave patterns. His research explored the potential of using brain signals, 

such as event-related potentials (ERPs), and the detection of specific brainwave patterns, to control 

external devices [29, 38]. 

            Sensorimotor Rhythm (SMR) BCIs: In the 1980s, researchers discovered that individuals 

could learn to control their brainwave patterns, specifically the sensorimotor rhythm, which 

consists of specific frequency bands recorded over the sensorimotor cortex. This discovery led to 

the development of SMR-based BCIs [9]. In this era, researchers explored the use of steady-state 

visual-evoked potentials (SSVEPs) for BCI applications. SSVEPs are the brain responses evoked 

by visual stimuli flickering at specific frequencies. By selectively attending to different flickering 

stimuli, users could generate distinct SSVEP patterns that could be detected and used as control 

signals for BCIs [30]. 

             In In the 1990s, researchers began exploring invasive BCIs, which involved implanting 

electrodes directly into the brain. This allowed for more precise neural recordings and control. The 

first successful application of invasive BCIs for spinal cord injury assistance occurred in the early 

2000s, when a paralysed individual controlled a computer cursor using neural signals [31]. 

                In 2004, BCI technology allowed paralysed individuals to control a computer cursor 

using neural signals. One notable development during this period was using invasive BCIs, 

specifically microelectrode arrays implanted in the brain, to record neural activity for cursor 

control. One significant milestone in direct neural control of a computer cursor was shown by 

Matthew Nagle, a paralysed individual. Nagle participated in a clinical trial conducted by Brown 

University and Cyberkinetics Neurotechnology Systems researchers. Nagle was implanted with a 

sensor array consisting of one hundred microelectrodes in his brain's motor cortex. Using his neural 

signals, Nagle was able to control a computer cursor and perform various tasks. By imagining 

moving his hand, he had control of the screen's cursor. and could use it to manipulate virtual objects. 

This breakthrough exemplified the potential of invasive BCIs in providing individuals with 

paralysis with the ability to interact with their environment using their thoughts [32]. 

            As the field progressed, non-invasive BCIs gained traction. These systems utilise 

electroencephalography (EEG) to detect electrical activity in the brain without the need for surgical 

implants. Non-invasive BCIs provided increased accessibility and user-friendliness despite being 

less accurate. Researchers developed techniques to decode brain signals associated with specific 

commands, like manoeuvring a wheelchair or a prosthetic limb [33]. 

          In the following years, significant progress was made in enhancing motor control and 

providing sensory feedback through BCIs [34]. Research teams successfully developed systems 

that enabled paralysed individuals to control robotic arms, allowing for more dexterous movements 

and interactions with the environment. Additionally, some experiments incorporated sensory 

feedback, permitting users to experience touch and proprioceptive sensations [35]. 

             More recently, hybrid interfaces have emerged, combining invasive and non-invasive 

techniques. These interfaces utilise invasive implants for high-resolution neural recordings and 

non-invasive methods for long-term use. Such approaches have shown promise in fine motor 

control, allowing users to perform complex tasks with greater precision. Moreover, efforts have 

been made to restore functionality directly to the spinal cord by using BCIs to stimulate neural 

circuits and bypass damaged areas [47]. 

          As of 2023, BCIs continue to advance rapidly. Researchers are refining the technology, 

improving decoding algorithms, and enhancing the reliability and longevity of implants. The focus 

is shifting towards developing more practical and user-friendly BCI systems that can be seamlessly 
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integrated into daily life, providing individuals with SCIs greater independence and functionality 

[36]. 

          We previously mentioned the change in BCIs in past eras regarding the basic technology of 

the BCIs. Now, we will mention in more detail some of the influential research from these eras. 

Theoretical concepts and a few prototype experiments about directly Brain-machine interfaces have 

existed since the 1960s., but brain-machine interface research didn't really take off until the end of 

the 1990s, when this strategy was closely associated with novel neurophysiological methods for 

gathering extensive brain activity samples [37]. Portable functional-electrical-stimulation (FES) 

sets are utilised to replace functions lost as a result of SCI. This section attempts to give a brief 

summary of the most widely used motor neuroprostheses, such as those that generate motions for 

the upper and lower extremities and respiration pace in patients with extremely high SCI. 

            Three different phases may be identified in the technological advances in BCI: the first 

involves the use of a BCI to provide impaired people with a direct line of communication. In the 

second level, more complex closed-loop BCIs are enhanced. In closed-loop BCIs, the interaction 

facilitates not only efficient device control but also the restoration of human functions [38]. 

Functional electrical stimulation (FES) devices that are portable are used to restore lost 

functionalities due to SC damage.  

            This section aims to provide a concise overview of the most popular motor neuroprostheses, 

including those that allow patients with extremely severe SCI to create movements for their upper 

and lower extremities and diaphragm pacing. The evolution of BCIs includes three stages: In the 

first stage, a BCI is used to deliver impaired information. In the third stage, more generic platforms 

for fusing AI and biological intelligence are suggested and built, made possible by the quickly 

advancing AI technology [39]. 

  
5. Development of BCIs Through Half-century 

 Here, we evaluate several BCI system paradigms in accordance with the evolution stages 

of BCI models. The history of BCI's evolution spans the last 53 years, from 1970 to 2023.. 

5.1.  Thinking up and Development of First BCIs 

Since Vidal thought up and designed the first BCI using visual-evoked potential (VEP), 

Jacques Vidal designed a system in the 1970s called the scalp-recorded VEP throughout the visual 

cortex for determining the direction of the human being's eye gaze, also known as the direction in 

which someone desires to move a computer pointer in relation to the visual fixation point [40].  

In 1988, the researcher discussed developing and evaluating a system that allows 

individuals to communicate using the event-related brain potential's (ERP) P300 component. The 

term P300 ERP refers to a beneficial offset in the EEG signal that happens about 300 milliseconds 

following a stimulus. The individual concentrates attention on the characters they want to convey, 

while the system shows a matrix of letters in addition to commands. The selected character is 

identified by the matrix's rows and columns flashing, eliciting the P300 component of the brain 

potential. The study explores the optimal number of trials, inter-stimulus interval, and detection 

algorithms for accurate and efficient communication [41]. 

A number of prototype BCI systems have been produced one after another using various 

EEG signal types and the slow cortical potentials (SCPs)-based BCI; for instance, a study aimed to 

develop a BCI using EEG to move the cursor on a computer screen. The main objective of the 
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study discussed in The purpose of the paper was to ascertain whether people could learn to reliably 

and quickly increase or decrease the mu rhythm, which is a particular pattern of brainwave activity 

in the 8–13 Hz frequency range that is observed over the sensorimotor cortex, and then utilise this 

rhythm to control a cursor on the screen of a computer. The goal was to demonstrate that the mu 

rhythm could serve as a code for directing a device. The mu rhythm may have potential applications 

for people with significant motor disabilities. The paper also mentions potential improvements in 

control and the possibility of achieving 2-dimensional control [42]. 

A direct brain interface that utilises steady-state-visual-evoked-response (SSVER) is used 

to direct a signal. Scalp electrodes and sophisticated signal processing techniques are used to 

measure the SSVER. People can learn to control the SSVER through biofeedback, and that control 

can be converted into instructions to control a physical device or computer programs. BCIs have 

the ability to enhance the lives of people with severe disabilities by controlling various systems, 

such as computers, prosthetic limbs, wheelchairs, or home systems, using P300 event-related-

potential-based BCIs [43]. 
 

5.2.  BCIs depend on the response to repetitive visual stimulation 

 It has been presented as a BCI system that permits users to enter their phones' numbers. 

SSVEP refers to the types of brain activities that occur in response to frequent visual stimulation. 

They are measured using electroencephalography (EEG) and are characterised by rhythmic 

oscillations in electrical activity in the brain occurring at similar frequencies as the visual stimulus. 

The system has a high transfer rate and is noninvasive, requiring little training for use. The study 

discussed the use of BCIs to enter phone numbers by looking at buttons that flicker on and off at 

various frequencies that are seen on a computer screen. The buttons stand in for the numbers 0 

through 9, BACKSPACE, and ENTER on a virtual phone keypad. Gazing at the chosen button 

allows users to choose it, and each selection is followed by a beep from the computer's speakers. 

Users can determine whether their pick was right by looking at the outcome that is shown on the 

monitor. 

 By looking at the BACKSPACE button, users can remove a selection if it is erroneous. 

When the ENTER button is selected, the input number is sent out through a modem connected to 

the telephone network using frequency-coded SSVEPs. The results showed that eight out of 

thirteen subjects were successful, and the system's rate of data transfer was 27.15 bits/min on 

average. This study suggested that increasing the number of visual cues and utilising more 

advanced signal processing algorithms can further improve the transfer rate [44], and the SSVEP-

based BCIs are some of the best-known early systems. 

BCI has been described depending on motion-onset visually evoked potentials (mVEPs). 

Although extensively explored in fundamental research, mVEP has never been employed in BCI 

studies. In the BCI application, time-locked mVEP was evoked by the fleeting movement of objects 

included in on-screen virtual buttons. This model's spatiotemporal pattern of mVEP was examined 

using EEG data collected from fifteen individuals. The N2 and P2 elements, with their separate 

parietal or temporo-occipital topographies, are chosen as the important elements of the brain 

response when the subject selects the existing item by looking at it at that target. The button that 

produced the most noticeable N2/P2 components is what the computer uses to identify the attended 

target [45]. 
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Brain signals have been explored to control a robotic humanoid that utilises motion-onset 

visual evoked potentials (mVEPs) and N200 potentials to code human brain functions and perform 

online operation tasks. The study evaluated factors that affect control success rates and completion 

time for tasks. It also discussed the importance of repetition numbers and proposed a N200 model 

for controlling the robot. Where mVEP is a type of event-related potential (ERP) that is induced by 

the onset of motion in visual stimuli.  

When the brain is exposed to visual inputs, electrical potentials take place that involve 

motion. In the context of controlling a humanoid robot, mVEPs can be used to decode a person's 

mental activities and translate them into commands for the robot. The mVEPs are generated by 

presenting visual stimuli that represent different robot behaviours, and the person focuses their 

attention on the desired behaviour. The mVEPs are then recorded using electroencephalography 

(EEG) and analysed to extract features that correspond to the person's intention. These features are 

used to control the robot's behaviour, such as navigating in an environment or picking up an object 

[46]. 

5.3.  From Classic to Hybrid BCIs 
 

The hybrid BCI front of these paradigms, also known as classical BCIs or conventional 

BCIs, shows that there is a chance for direct brain-machine connection. Many other paradigms 

have arisen in the years that have followed in an effort to enhance the overall performance of 

traditional BCIs. To develop the user’s experience of VEP-based BCIs, the motion-onset VEP 

(mVEP)-based BCI was created to eliminate the pain feeling brought on by the flickering 

stimulation [47]. 

In order to enhance overall BCI implementation, this reference suggested a collaborative 

paradigm that incorporated data from several users in order to compare the precision of the 

categorization of single-user and collaborative BCIs using EEG data from twenty participants in 

the development of motions for physical activity in order to evaluate the viability of a collaborative 

BCI. Additionally, three alternative techniques were investigated in this work for combining and 

evaluating EEG data from various issues: (1) Event-related Potentials (ERP) Averag, (2) Feature 

Concatenation, and (3) Voting. As the number of individuals rose from 1 to 5, 10, 15, and 20, 

respectively, the precision with which movement directions may be classified (reaching left and 

reaching right) significantly improved between 66% and 80%, 88%, and 93%. By decoding the 

ERP activity, which mostly originates from the posterior-parietal cortex (PPC) and is associated 

with the processing of visuomotor transmission, the choice of around 100–250 ms before the 

participant's real movement response can be ascertained [48]. 

Hybrid BCIs were developed to increase communication capacity by combining several 

BCI paradigms or merging additional physiological signals into conventional BCIs, such as the 

electromyogram EMG. The idea of machine learning-based co-adaptive calibration was proposed 

by C. Vidaurre, and it significantly enhanced performance for a range of users. He took the same 

approach and looked at the extent to which co-adaptive learning permitted considerable BCI control 

for both wholly inexperienced users and those who were unable to gain control using a traditional 

sensorimotor rhythm SMR-based BCI [49]. 

 It has been shown that collaborative BCI may be utilised to combine ERPs from various 

individuals to make decisions as a group. There were many challenges faced by BCI developers, 

so Singh, A., depended on There are two main causes of this: (a) user variability, which refers to 

large differences in performance within and among users; and (b) signal variability, which refers 
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to high signal changes within or across BCI sessions. Modern signal processing and classification 

techniques can adjust to the variations to some extent. This allows robots to adjust to their users; 

nevertheless, these methods ignore the reasons behind these users' variability and their signals. Co-

adaptive BCI systems are recently proposed ideas that determine the reason for variability and 

include suitable measures to address it. This makes it possible for the person and the device to 

adjust to one another [50].  

 

5.4. ECOG and MEG neurofeedback BCIs 
 

After that, Astrand, E., explored the feasibility of using attention-related signals to control 

BMIs and provided an overview of studies that have attempted to decode attention-related 

information using various recording methods. He focused on the challenges and limitations of 

attention-driven cognitive BMIs and discussed potential applications in cognitive rehabilitation and 

communication. Astrand, E. illustrated the different recording methods used in studies on attention-

driven cognitive BMIs, including invasive methods such as SEEG electrodes inserted via the 

cranium and into the brain and ECoG electrodes applied to the dura, as illustrated in Figure 5. The 

electrodes were inserted intracortical into the brain. EEG electrodes applied to the scalp and MEG 

squids put all over the head are examples of non-invasive techniques. Among these methods, non-

human primates using invasive attention-based methods have demonstrated the best decoding skills 

when compared to human subjects using both invasive and non-invasive recording methods. This 

is most likely because it is possible to conduct the recordings in the closest vicinity of the attention-

related signal source. Furthermore, activations in certain regions of interest (ROIs) that have been 

recognised based on their relevance to mechanisms involved in spatial concentration drive the 

fMRI decoding of spatial attention, and it has also shown a high decoding performance [51]. 
 

 

 
Figure 5: ECoG electrodes. 

 

Bagherzadeh, Y., illustrated in his study that he trained subjects to regulate the brain's 

parietal alpha on the left versus the right synchronisation using MEG neurofeedback. The findings 

demonstrated that a spatial bias in attention and visual processing was brought about by modulating 

alpha synchrony. According to the study, alpha synchrony influences attention and visual 

processing causally. The study's primary conclusions were: During the neurofeedback trials, 

participants were able to reliably regulate parietal alpha lateralization. Neural and behavioural 

effects in line with the training direction showed that neurofeedback training produced a persistent 

regulation of spatial attention.  
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There is a bias in free-viewing behaviour when the behavioural effects after training are 

observed on trials without a strong, top-down spatial signal. In a single short training session, the 

study's naive participants were able to exert control over their own parietal alpha power, indicating 

that neurofeedback is a potentially useful and accessible technique for a variety of populations 

without requiring specialised training or advanced skills. Overall, the research showed that 

neurofeedback training may produce persistent regulation of spatial attention and allow online 

control of alpha power over the parietal cortex. 

The participants in the study successfully modulated alpha power in the desired direction 

by using neurofeedback training. They received real-time feedback on their alpha power levels in 

the parietal cortex and were instructed to increase or decrease their alpha power based on the 

feedback they received. Through trial and error, participants learned to self-regulate their alpha 

power and achieve the desired modulation [52]. 

Sitaram, R., discussed the concept of neurofeedback, its applications in altering neural 

function, and its potential in various clinical settings. He explored the use of different neuroimaging 

modalities in neurofeedback, the neural plasticity and specificity that can occur as a result of 

training, and the potential targets for neurofeedback in neuropsychiatric disorders. The researcher 

also discussed the theories and psychological factors that influence neurofeedback learning, as well 

as the difficulties and possibilities of research in this field. Neurofeedback training works by 

providing online feedback on neural activation to the participant, allowing them to learn control 

over specific neural substrates and ultimately self-regulate their behaviours or pathologies. 

The participant gets information regarding how the brain’s activities work in real-time, 

typically through visual or auditory cues, and is encouraged to modify their brain activity in a 

desired direction. This feedback is often based on specific biomarkers or the neuronal activity 

patterns that have been associated with the target behaviour or pathology. Through repeated 

practice and reinforcement, the participant learned to modulate their brain activities in a sense that 

is associated with the desired outcome. This process is thought to involve neuroplasticity, which 

refers to the brain's power to alter its structure, organisation, and operation in reaction to 

experiences, learning, stimuli, the environment, and neurological adaptations.  

It is the brain's capacity to modify its neural connections, synaptic strength, and even the 

formation of new neurons as the brain learns to reorganise and adapt its neural connections and 

activity patterns in response to feedback [53]. This paradigm stresses mutual learning from both 

controllers. Such closed-loop devices are frequently employed in research into the neurological 

underpinnings of mental processes, which refers to anything related to the neurological system, 

comprising peripheral nerves, the brain, and the spinal cord, such as perception, attention, and 

memory. 

 

5.5. Augmented BCIs 
 

Liao, L.D., showed that dry electrode solutions are more suitable and straightforward than 

standard EEG sets with wet electrodes. Wet electrodes have been used to provide exceptional 

sensitivity, so the ability to create enhanced BCIs (ABCIs) was made possible by the advancement 

of biosensing. An ABCI uses biosensors to monitor brain activity in its natural surroundings, much 

like a BCI. After that, the signals are instantly analysed to track an individual's movements and use 

an ABCI as a portable brain-imaging device. This page provides an overview of the various 

biosensor techniques currently employed for ABCIs. He demonstrated how wet electrodes have 
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independent and reliable reading circuitry. It is crucial to build an appropriate reading device for 

daily usage using dry or noncontact electrodes. Insights into the development of flexible electronics 

and display technologies, the expansion of power-efficient data processing algorithms, and the 

reduction of sensors, electronics, and power sources might potentially considerably augment the 

capabilities of ABCI in the future [54]. 

Recently, a platform that combines artificial intelligence (AI) and brain-computer 

intelligence was introduced. To research people's cognitive states and perhaps reach computational 

intelligence to improve human capabilities, new paradigms like cognitive BCIs and enhanced BCIs 

have been created [55]. Speech signals captured on audio, images, and psychophysiological data 

originating from the central and peripheral nervous systems may all be used to study emotions, 

which are referred to as bioregulatory remarks of facial expressions [56, 57]. 

By comprehending how emotions impact brain activity, other paradigms, including 

affective BCIs, The primary complaints levelled at this model by those who oppose it are that the 

variety and abundance of emotions, as well as contradictions, are not fully understood, in the 

physiological patterns of those emotions, and that the definition of fundamental emotions is too 

ambiguous and does not adequately capture the complex emotions. However, when it comes to 

fundamental emotion models, dimensional models are more concerned with the structure of 

emotional responses than they are with the underlying mechanisms that connect an event to a 

particular emotion organism [58]. 

Complex systems of evaluation involving a variety of consecutive emotional reactions are 

determined by event checks on several analytical levels, including relevance, consequences for 

current aims, coping capabilities, and normative importance. Numerous cognitive and motivational 

processes, such as self-concept, inspiration, retention of information, focus, and reasoning, are used 

to guide these tests. The results of this review procedure are defined as constructs [59], emotional 

BCIs [60], and mood BCIs [61, 62], which identify and manage emotion. Here, we have witnessed 

the development of BCIs from an interface to an interaction with intelligence. In the subject matter 

that follows, we go into further detail on the development of two key BCI applications.  

In the interface stage, issues with brain signal generation and translation are the main focus 

of BCIs for communication and control. Primary visual, auditory, and sensorimotor BCI paradigms 

encode and decode brain signals so users may control output devices directly. Co-adaptation has 

been employed at the interaction stage to enhance communication rates in addition to facilitating 

system calibration. The accuracy and resilience of decoding are considerably increased by the 

adaptive classifiers. Additionally, the modulation and demodulation techniques used in 

telecommunications considerably improve the link between the brain and computer in visual and 

auditory BCIs [63, 64]. 

5.6. Neural Coding and Decoding in Sensorimotor BCIs 

Artificial intelligence (AI) methods have been included to accomplish neural coding and 

decoding in BCIs at the intelligence stage. Speech BCIs, which interpret and translate speech-

related brain processes into genuine language, have therefore achieved unheard-of advancements 

[65, 66]. BCI uses ECoG signals and an encoder-decoder architecture based on neural networks to 

achieve high decoding accuracy at typical speech speeds [67, 68]. Neuro-rehabilitation has had 

success with the application of sensorimotor BCIs, particularly for the treatment of stroke. The 

main technological advancement at the interface level is the production of strong brain signals for 

efficient operation of the rehabilitation equipment. The method of active training that works the 
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brain directly has received increased attention throughout the interaction stage. According to co-

adaptive learning of the brain and algorithms, the performance of sensorimotor BCIs enhances the 

BCI system, bringing about a wider control dimension, more accuracy, and quicker speed [69]. 

BCI-based rehabilitation may be made even more effective by combining BCI-enabled 

intelligent rehabilitation systems at the intelligence level. For example, the use of intelligent 

exoskeletons in conjunction with BCIs has great potential for assisting patients in regaining their 

motor skills [70]. Strict neurointervention was used to implant a novel vascular Stentrode BCI near 

the primary motor cortex in the upper sagittal sinus.Using wirelessly communicated 

electrocorticography data associated with attempted motions, the participants underwent ML-

assisted training to manage a range of mouse-click actions, including zoom and left-click. 

Participants were able to perform instrumental activities of daily living using Windows 10 when 

paired with an eye-tracker for a computer’s pointer movement [71]. 

Applications of BCI include monitoring and regulating normal and abnormal cognitive 

activity, detecting and preventing brain diseases, controlling and analysing psychophysiological 

states, and directing the movement of robots and exoskeletons [72].  

5.7.      ML/DL techniques in EEG-based BCI 

As As artificial intelligence technology advances, researchers are able to classify EEG-

based BCI through the use of ML and DL techniques. With every session, BCI is able to learn more 

about the subject's brain. The efficacy of the system is improved by modifying the guidelines that 

were set forth for concept labelling [73].  

The authors provide a concise overview of the usage of several ML/DL techniques in EEG-

based BCI. He uses the steady-state evoked potential paradigm, p300, and motor imagery to 

categorise the EEG. Recently developed EEG-based BCI systems have challenges with regard to 

best practices for signal processing, BCI functionality, performance assessment, and 

commercialization. These issues are also covered. They believed that the information formed would 

help in the deployment of appropriate ML algorithms and offer a base for BCI scientists to enhance 

future BCIs [74]. 

In the interface stage of neuro-rehabilitation, sensorimotor BCIs have proven to be 

successful applications. The essential technology here is the generation of a strong brain’s signals 

to efficiently control the rehabilitation equipment. An active training approach that works on brains 

directly has received increased attention in the interaction stage. The sensorimotor BCI system 

performs better when the brain and algorithms learn together, which increases management speed, 

precision, and dimension [75]. 

Furthermore, in order to facilitate healing, neuromodulation techniques have been used to 

alter cortical excitability and plasticity. Intelligent rehabilitation systems can greatly boost the 

efficacy of BCI-based rehabilitation when paired with BCIs. For instance, the combination of 

intelligent exoskeletons with BCIs has the potential to greatly improve patients' ability to regain 

their motor abilities [76]. 

An innovative endo-vascular Stentrode BCI was inserted into the higher sagittal sinus, 

which is next to the primary motor cortex, using a minimally-invasive neurosurgical technique. 

The participants received ML-assisted training to manage several pointer-click operations, such as 

zoom, using wirelessly transmitted electrocorticography signals associated with attempted 
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motions. Using an eye tracker to guide the mouse, participants were able to operate the Windows 

10 operating system and perform IADL tasks [77]. 

Alexander E. highlighted the most often used methods for categorising and analysing 

electroencephalogram (EEG) and magnetoencephalogram (MEG) data. Particular attention is 

placed on contemporary technologies centred on reservoir computing and machine learning. We go 

over the key findings from the development and use of BCIs derived from both non-invasive and 

invasive EEG recordings. Initially, he thought of using neural interfaces to manipulate the motion 

of exoskeletons and robots. Second, he discussed the use of BCIs in the diagnosis and management 

of abnormal brain activity, including epilepsy. He also talked about how invasive BCIs have been 

developed to forecast and mitigate the lack of epileptic episodes [78]. 

Three Three EEG paradigms are employed for the classification in ML/DL approaches to 

EEG-based BCI: motor imagery, p300, and steady-state evoked potential. Furthermore, optimal 

signal processing techniques, BCI functionality, and performance evaluation are all used to 

overcome the difficulties that modern EEG-based BCI systems encounter [79]. BCI may recognise 

certain EEG patterns and translate them into orders for external devices, providing an additional or 

different channel of communication for those with significant difficulties with movement [80].  

Incorrect use of the loss function and less sensible hyperparameter configurations. A novel 

deep-learning model called NeuroKinect is introduced to overcome these drawbacks and provide 

precise hand kinematics reconstruction using electroencephalography (EEG) data. To increase 

computational efficiency, NeuroKinect is trained using grasp and lift task data with the fewest pre-

processing pipelines. One major enhancement that NeuroKinect brings to the table is the use of a 

new loss function called L Stat to correct for the mismatch in hand kinematics prediction involving 

correlations and mean square error. The study highlights how choosing the parameters to improve 

accuracy is guided by scientific intuition. Event-related potential and brain source localization data 

are used to examine the spatial and temporal dynamics of the motor movement task. There are 

significant connections between the model's predicted and observed hand motions [81]. 

Ferrero, L., examined the use of a BCI based on motor imaging (MI) to lower limb 

exoskeleton control as a means of promoting motor recovery following brain damage. Ten 

volunteers in good health and two patients suffering from SCIs underwent BCI evaluations. To 

expedite training with the BCI, five participants in good physical condition participated in a training 

virtual reality session. When the outcomes of this group were contrasted with those of a control 

group consisting of five participants who were able-bodied, it was shown that using virtual reality 

for shorter training did not lessen the BCI's effectiveness in fact, in certain situations, it 

substantially enhanced it. 

Patients were satisfied with the approach and were able to manage trial sessions without 

becoming overly physically or mentally exhausted. Future studies should look into the promise of 

the MI-based BCI system, since these findings support the application of BCI in rehabilitation 

initiatives. Robotic exoskeletons and orthoses have become commonplace wearable with the 

promise to improve mobility and physical performance. It has been demonstrated that including 

them in rehabilitation programmes aids in the restoration of motor function, especially for patients 

who have had a stroke or spinal cord injury. Lower-limb MI is more challenging due to the deep 

location of the motor cortex's leg area, making it difficult to accurately record. However, these 

approaches have poor performance metrics. Interest has been piqued in closed-loop control of 

external devices, especially for lower-limb MI. Motion intention, a cortical potential generated by 
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the motor cortex immediately before a movement, has been the basis for closed-loop control 

advocated by certain authors [82]. 

Khan S. proposed that 61-channel EEG equipment be used to capture the EEG signals of 

fifteen people, and the recordings are available to the public. He focused on a technique that used 

spectrograms of the EEG data and deep learning (DL) models that had already been trained to 

categorise four groups for various subjects. The suggested approach has produced noteworthy 

results; the greatest average classification accuracy was 87.36%, while the maximum classification 

accuracy was 97.03% for one topic. This research has therapeutic importance; it uses an EEG 

spectrogram and a pre-trained deep-learning model that is optimised for the downstream goal of 

classifying upper limb movement execution with notable accuracy [83]. 

5.8.   Assistive BCIs Depend on Rehabilitation Therapy 

Iahn Iahn Cajigas and Kevin C. Davis reported that, in a case study, an 

electroencephalogram (ECoG) sensing device, as shown in Figure 6, was placed over the 

sensorimotor hand area of the brain in a 24-year-old male individual with cervical SCI. The 

participant trained decoders to categorise sensorimotor rhythms using motor imagery (MI). During 

the next fifteen sessions of closed-loop trials, the participant walked for an hour on a weight-

supported treadmill once or three times a week. The top-performing decoder achieved an average 

accuracy of 84.15% over a period of nine weeks.  

The outcomes show that it is possible to employ UL MI as a control signal for lower-limb 

motor control by decoding it. Intrusive BCI systems designed for upper-extremity motor control 

can be extended to control systems that do not need upper-extremity control. Crucially, over a few 

weeks with the invasive signal, the decoders in use were able to separate MI from the invasive 

signal. Further research is needed to determine the long-term consequences of UL MI and the 

ensuing lower-limb control [84]. The study participants demonstrated that by using wrist joint 

muscular contractions, people with SCI were able to successfully operate a virtual cursor. The 

sonomyography-based interface's ability to control the cursor at different grade levels revealed its 

capacity to acquire very accurate and stable endpoint control. 

 

 
Figure 6: Assistive BCIs depend on rehabilitation. 

 

Rehabilitation therapy effectiveness is closely related to the techniques used to operate the 

robotic end-effector. There have been several reports on two strategies: the cooperative or active 

control method and the passive control technique. With the use of passive methods, patients may 

be repeatedly trained to reach and grip objects along predefined trajectories without having to move 

voluntarily. Active strategies, on the other hand, maximise the use of residual motor function by 
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preventing disuse-induced muscle atrophy. Electromyography is no longer the only method 

available to monitor muscle activity; ultrasound-based detection of mechanical muscle contractions 

has been used to operate prosthetic devices. Detecting individual finger positions and joint forces 

is possible with ultrasound imaging, a non-invasive sensing modality that can also resolve deep-

seated muscle compartments. It has also been used to achieve proportionate control of multiple 

degrees of freedom, which is necessary to control multi-articulated prosthetic arms and legs [85]. 

6. Potential  Risks and Challenges of BCI  Implementing Technology for SCI:  
 

           Invasive Procedures: Some BCI technologies require invasive procedures, such as 

implanting electrodes or neural interfaces into the brain. These invasive procedures carry risks such 

as infection, tissue damage, or adverse reactions to the implant. Minimising these risks and ensuring 

the safety of the individual undergoing the procedure is of paramount importance [86, 117]. 

 Long-Term Reliability: BCIs intended for long-term use need to be reliable and robust. The 

longevity of implanted devices, their stability over time, and the potential for degradation or 

malfunction are critical concerns. Ensuring the long-term reliability of BCI technology is crucial 

for its practical application and user acceptance [87]. 

 Calibration and Individual Variability: BCI systems often require calibration to establish 

accurate and consistent communication between the brain signals of the user and the intended 

control commands. However, individual variability and changes in brain signals over time can pose 

challenges. Variations in signal quality, signal-to-noise ratio, and the need for frequent recalibration 

can affect the performance and usability of the BCI system [88]. 

 Limited Control Accuracy and Speed: Achieving high levels of control accuracy and speed 

can be challenging. Factors such as signal decoding algorithms, signal processing delays, and the 

complexity of mapping brain signals to intended actions can limit the precision and speed of control 

[89]. These limitations may affect the practicality and effectiveness of BCI systems in real-world 

scenarios. 

 Training and Learning Curve: Effective use of BCIs often requires training and practice to 

optimise the user's ability to generate reliable and distinct brain signals for control commands. The 

learning curve associated with BCI technology can vary among individuals, and some users may 

face difficulties mastering the control strategies or maintaining consistent performance [90, 116, 

120]. 

 Adaptation and Plasticity: The brain's ability to adapt and reorganise itself, known as 

neuroplasticity, poses challenges for BCI implementation. Changes in neural activity and 

connectivity over time, as well as the potential for adaptation to the BCI system itself, can impact 

the stability and accuracy of control signals [91]. 

 User Acceptance and Usability: User acceptance and usability are crucial for successful BCI 

implementation. Factors such as comfort, convenience, ease of use, and the overall user experience 

play a significant role [92]. 

 Ethical and Privacy Considerations: BCI technology raises ethical considerations, including 

privacy, informed consent, and potential risks to personal autonomy. The collection and storage of 

neural data, especially if it relates to sensitive information or brain activity, require appropriate 

safeguards to protect user privacy and ensure ethical use of the technology [93]. 

Biocompatible Materials: The use of biocompatible materials in the design of implantable 

BCI devices is crucial for long-term reliability. Researchers are investigating materials that are less 

likely to cause adverse reactions, inflammation, or tissue damage. Biocompatible coatings and 
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encapsulation techniques are also being explored to protect implanted electrodes or neural 

interfaces from degradation or rejection by the body [94, 117]. 
 

7. Elimination of BCIs Challenges: 

 The successful elimination of challenges associated with BCIs marks a ground-breaking 

achievement in the realm of neurotechnology. Overcoming technical hurdles such as signal noise, 

limited bandwidth, and the need for invasive procedures has paved the way for more seamless and 

effective BCIs. 

           Minimally Invasive Implantation Techniques: Minimally invasive procedures for 

implanting BCIs can reduce the risks associated with invasive surgeries. Techniques such as 

stereotactic implantation, which uses precise imaging and targeting, can minimize tissue damage 

and improve the accuracy of electrode placementas shown in Figure 7. Minimally invasive 

approaches can also facilitate easier removal or replacement of devices if necessary [95]. 

 

 
Figure 7: Stereo EEG 

 

            Advanced signal processing algorithms and machine learning techniques have significantly 

improved the accuracy and reliability of extracting meaningful information from the brain's 

electrical signals. Non-invasive BCI technologies, utilising methods like electroencephalography 

(EEG), have gained prominence, offering a user-friendly approach for widespread adoption.  

         Additionally, the ethical and privacy concerns surrounding BCIs have been addressed through 

stringent regulations and the development of transparent and secure frameworks. This collective 

progress has not only enhanced the usability of BCIs in medical applications, such as prosthetics 

control and neurological rehabilitation, but also opened up new frontiers in human-computer 

interaction and cognitive augmentation. 

             Wireless and Implantable Telemetry: Wireless communication and implantable telemetry 

systems eliminate the need for physical connections between external devices and implanted BCI 

components. This reduces the risk of infection, mechanical strain, or damage to the implanted 

electrodes or interfaces [96,118]. Wireless technology also allows for more freedom of movement 

and reduces the burden of external wiring. 

 Long-Term Stability and Bio stability: Ensuring the long-term stability and bio stability of 

implanted BCI devices is crucial. Bio stability refers to the ability of the device to maintain its 

functionality and performance over an extended period within the biological environment [97]. 

Researchers are exploring materials and device architectures that can withstand the physiological 

conditions and minimize degradation or loss of signal quality over time. 
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8. Optimizing BCIs Performances and Requirements Keys: 
 

 Neural Interface Design: Improving the design of neural interfaces is a key strategy to 

enhance long-term reliability. This includes optimising the shape, size, and mechanical properties 

of the electrodes or interfaces to minimise tissue damage, inflammation, or degradation. Flexible 

and biocompatible electrode designs are being investigated to improve the interface with neural 

tissue and reduce the risk of chronic inflammation or scar tissue formation [98, 119]. 

 Signal Processing and Adaptation: These approaches aim to adapt the BCI system to 

variations in signal quality, neural activity, or connectivity that may occur as a result of long-term 

implantation. Adaptive algorithms can enhance the system's ability to decode and interpret brain 

signals accurately, even as they evolve [99]. 

 Long-Term User Training and Adaptation: Training protocols that facilitate long-term user 

adaptation and learning are being explored. Continuous training and feedback mechanisms can help 

users maintain consistent and reliable control of the BCI system over time [100]. Adaptive training 

paradigms that adjust to individual users' changing needs and abilities can improve long-term 

performance and usability. 

 Biocompatibility Testing and Preclinical Studies: Rigorous biocompatibility testing and 

preclinical research studies are essential to evaluating the extended effects of BCI devices and 

identifying potential risks or limitations. These studies involve evaluating the device's 

performance, stability, and safety over extended periods in relevant animal models or simulated 

human models. Such research provides valuable insights into the durability of brain-computer 

interface technology [101]. 

By combining these strategies and continuing research efforts, the goal is to enhance the 

long-term reliability of BCI technologies, improving their practicality and effectiveness for SCIs 

and other conditions.. 
 

9. A Promising and  Adaptive Training Paradigms in BCIs: 

 Adaptive Task Difficulty: One approach is to dynamically adjust the difficulty of the BCI 

task based on the user's performance. The task difficulty can be modified by altering parameters 

such as the speed, complexity, or required accuracy of the control task. If the user consistently 

achieves high performance, the task difficulty can be increased to provide a challenging experience 

and promote skill improvement. Conversely, if the user struggles, the difficulty can be adjusted to 

a more manageable level to avoid frustration and maintain engagement [102]. 

 Error Augmentation: Error augmentation is a technique where artificial errors are 

introduced into the BCI's feedback to enhance the user's learning and adaptation. The system 

intentionally amplifies or distorts the feedback based on the user's performance, providing 

exaggerated errors. By making errors more noticeable, users can better understand the 

consequences of their actions and adjust their strategies accordingly [103]. This approach 

encourages users to explore different control strategies and refine their performance over time. 

 Co-adaptive Training: Co-adaptive training involves simultaneous adaptation of both the 

BCI system and the user. The system continuously adapts its decoding. 

 Feedback-Driven Adaptation: Feedback-driven adaptation involves providing real-time 

feedback to the user during training and BCI operation. The feedback may come in the form of 

audio, or visual, or tactile cues that indicate the quality or accuracy of the user's brain signals. By 
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utilising this feedback, it is possible for users to control their brain activity more effectively, leading 

to increased control accuracy and improved performance over time [104]. 

 Context-Aware Adaptation: Context-aware adaptation takes into account the changing 

context or conditions in which the BCI system operates. It adapts the system's parameters or 

strategies based on factors such as user state, environmental conditions, or task difficulty [105]. By 

dynamically adjusting the BCI system to a specific context, users can achieve better performance 

and maintain consistent control accuracy over time. 

 Transfer Learning: Transfer learning leverages knowledge or models acquired from 

previous BCI users to accelerate training and adaptation for new users. By using pre-existing 

models or data, the system can initialise training with a foundation of knowledge, reducing the 

training time and improving the learning curve for new users. Transfer learning has the potential to 

enhance long-term performance by leveraging collective knowledge and experience [106]. 

It's important to note that adaptive training paradigms are still an active area of research, 

and their effectiveness may vary depending on factors such as the specific BCI modality, user 

characteristics, and task requirements. The success of an adaptive training paradigm also depends 

on individual user variability and the ability to generalise  adaptations to different contexts. 

10.  Our Proposed Approach 
  

According to further review of the previous research in that domain, the research group 

selected an approach for processing data acquisition and designing BCIs involving the following: 

Sensor Placement: Depending on the type of BCI system, sensors or electrodes are placed 

on or near the user's scalp or brain to detect neural activity. The specific sensor placement depends 

on the chosen BCI modality, such as EEG, fNIRS, or invasive methods [107]. 

Signal Acquisition: The sensors or electrodes capture the electrical or optical signals 

generated by the brain. This can be done using either invasive techniques like implanted electrodes 

or non-invasive techniques like EEG. The signals are then amplified and converted into a digital 

format for further processing [108]. 

Pre-processing: The acquired signals often undergo pre-processing steps to enhance the 

quality and extract relevant information, as shown in Figure 8. This may involve filtering to 

remove noise, artifact, or unwanted frequencies, as well as signal normalisation or baseline 

correction [109]. 

 Feature Extraction: In this step, meaningful features are extracted from the pre-processed 

data. Feature extraction aims to identify specific patterns or characteristics in the signals that are 

relevant for the BCI application. These features can include frequency patterns, event-related 

potentials, or other neural signatures that represent specific mental states or intentions. In another 

sense, the features can include spectral power, event-related potentials, or other domain-specific 

measures [110]. 

Calibration or Training: The BCIs typically require a training or calibration phase to 

establish a mapping between the extracted features and the user's intended commands or actions 

[111]. During this phase, the user performs specific tasks or engages in mental activities while the 

BCI system records their brain signals. The recorded signals are utilised to train a regression or 

classification model that maps the features to the desired outputs [112]. The system is exposed to 

a dataset containing EEG recordings associated with various hand movements. These movements 

could include actions like grasping, pointing, or other specific gestures. The model learns to 
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recognise patterns and correlations within the EEG signals that correspond to different hand 

movements. Through a process called supervised learning, the BCI model adjusts its parameters to 

accurately map EEG patterns to specific hand movements, forming a robust understanding during 

the training stage. 

Testing, Prediction, and Evaluation: Once the calibration or training is complete, the BCI 

system is tested to assess its performance. The user performs tasks or provides commands, and the 

system predicts the intended actions based on the acquired data [113]. For predicting hand 

movements through EEG signals, the trained model is deployed to interpret real-time EEG data. 

As a user thinks about or initiates a hand movement, the BCI system processes the incoming EEG 

signals and employs the learned patterns from the training stage to predict the corresponding hand 

movement. This involves mapping the current EEG patterns to the established associations learned 

during training, ultimately providing real-time predictions of the intended hand movement based 

on the user's brain activity. The accuracy and reliability of the system are evaluated using a variety 

of measures, including keeping up with information transfer, reaction time, and the accuracy of 

categorization [114]. 

Real-time Operation: In the final step, the BCI system is deployed for real-time operation. 

The acquired data is continuously processed and interpreted by the BCI algorithms to provide 

control signals for external devices or applications, such as controlling a robotic arm, typing on a 

screen, or interacting with a virtual environment [115]. 

 

 
    Figure 8: Our proposed approach. 

 

It's It's important to note that the specific steps and details can vary depending on the BCI 

modality, hardware setup, and intended application. Additionally, we focused on developing more 

efficient and automated techniques for data acquisition and processing in BCIs. We present a short 

overview of the publicly accessible BCI software platforms. A platform is a system that enables 

communication and interaction between the human brain and a computer or other external devices. 

It serves as an intermediary between the user's brain signals and the intended application or output. 

A platform is a website devoted to stimulus presentation and response [26]. BCI2000, OpenViBE, 

TOBI Common Implementation Platform (CIP), BCILAB, BCI++, xBCI, BF++, Pyff, and 

OpenBCI are the nine platforms. 

The BCI software platform typically consists of several components: signal acquisition, 

signal processing, feature extraction, classification and decoding, and application interface. We 

suggest this approach to and performance of a low-cost and lightweight neuroprosthetic. A high-

density multielectrode will be placed across the sensorimotor cortex region that regulates hand 
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movement in a person with SCI who has lost the ability to move. We'll build AI models for 

categorization using deep learning methods of the brain's signal patterns in the recorded cortical 

activity to move the hand directly, bypassing the brain's signals on a device that translates them and 

electrically stimulates the muscles and nerve axons responsible for hand movement (up, down, 

grasp, relaxation), and enabling tactile reactions by placing sensors on the hand. 

 

11.  Conclusion 

The literature review yields several key findings regarding the use of BCIs for individuals 

with SCIs. Continued research and development efforts are aimed at refining and optimising these 

adaptive training paradigms to achieve better long-term performance in BCI systems. 

Implementing transfer learning for adaptive training in BCIs presents several challenges that need 

to be addressed. BCIs have been used successfully to enable individuals with spinal cord injuries 

to control prosthetic limbs, wheelchairs, and other assistive devices. Furthermore, the review sheds 

light on the future trends in BCI development for SCIs, considering both technological 

advancements and user-centred perspectives. It explores emerging technologies such as 

optogenetics, nanotechnology, and neuroprosthetics, which hold the potential to revolutionise BCI 

capabilities in order to enhance the quality of life for spinal cord injured people. Additionally, the 

review discusses the importance of user feedback, personalised training paradigms, and 

collaborative interdisciplinary efforts in driving the future development and widespread adoption 

of BCIs. 

 In conclusion, this literature review seeks to provide a comprehensive overview of BCIs 

for assisting SCIs from an evolutionary perspective. By examining the historical progress, current 

state, and future trends in BCI development, it aims to contribute to the understanding of how BCIs 

can continue to empower individuals with SCIs, promote neuro-rehabilitation, and enhance their 

overall lives.. 
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