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 ABSTRACT  

 
Autonomous vehicles are revolutionizing transportation, and the accuracy of road lane detection 

is a pivotal aspect of this innovation. This paper presents an in-depth exploration of a sophisticated 

lane detection system, geometric modeling to estimate the geometric structure of lane boundaries 

based on images captured by an onboard vehicle camera, and the deployment of object detection 

techniques. The lane detection system is meticulously designed, employing a series of computer 

vision techniques to identify and track lanes in various driving conditions. The curve fitting 

component utilizes a second-order polynomial, providing a mathematical model that accurately 

represents the curvature and intricate dynamics of the detected lanes. This mathematical 

representation provides a more nuanced understanding of the road geometry, aiding in the 

prediction of vehicle trajectory. The object detection facet of the research focuses on the 

recognition and classification of objects within the driving environment, contributing significantly 

to the overall situational awareness of autonomous driving systems. The YOLO (You Only Look 

Once) algorithm is commonly used for this purpose as it can process frames at an impressive speed 

while maintaining high accuracy, making it suitable for real-time applications. The efficacy of the 

suggested techniques was confirmed by conducting experiments on two distinct datasets. The 

proposed method achieved an accuracy of 98.64% on the Tusimple and 96.92% on the KITTI 

dataset, demonstrating its robustness and reliability under varying conditions. 
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 تصميم نظام شامل للتنقل بالمركبات الذاتية القيادة 

 منال مصطفى على *، ريهام أبو بيه،  ممتاز سعد الخولى 

، القاهرة، مصر11884، كلية الهندسة، جامعة الأزهر، مدينة نصر، والحاسبات النظم قسم   

manal.mustafa@ azhar.edu.eg : البريد الالكتروني للباحث الرئيسي *  
 الملخص 

ودقة كشف المسارات على الطرق تعد جانباً حاسمًا في هذا الابتكار. يقدم هذا النقل،    وانظمة  تحُدث المركبات ذاتية القيادة ثورة في مجال

كشف ، وتنفيذ تقنيات  اتلانحناءوحساب ا  لتنبوءالبحث استكشافاً معمقاً لنظام كشف المسارات المتطور، وتطبيق معادلة من الدرجة الثانية  

تصميم نظام الكشف عن المسارات بعناية فائقة، حيث يستخدم سلسلة من تقنيات الرؤية الحاسوبية لتحديد وتتبع  ب   يبدأ البحث الأجسام.    وتحديد

معادلة من الدرجة الثانية، مما يوفر نموذجًا رياضياً   الحدود  اتمتعدد  الحارات  انحناء   لحسابالمسارات في ظروف القيادة المختلفة. يستخدم  

. يوفر هذا التمثيل الرياضي فهمًا أكثر تفصيلاً لهندسة الطريق، مما يساعد في التنبؤ عالية  بدقة  انحناء المسارات المكتشفةديناميكية و يمثل

وتصنيفها داخل بيئة القيادة، مما يساهم بشكل كبير في الأجسام    علىن الأجسام من البحث على التعرف  بمسار السيارة. يركز جانب الكشف ع

بسرعة مذهلة   الصوربشكل شائع لهذا الغرض حيث يمكنها معالجة     YOLOالوعي الظرفي العام لأنظمة القيادة الذاتية. تسُتخدم خوارزمية  

الفعلي. الوقت  لتطبيقات  مناسبة  يجعلها  مما  العالية،  الدقة  الحفاظ على  تجارب على  مع  إجراء  المقترحة من خلال  التقنيات  فعالية  تأكيد  تم 

بيا المقترحو. هذا  نات متميزتين  مجموعتي  النموذج  بلغ  قد حقق  البيانات    98.64ت %دقة  على    96.92  %و   Tusimpleعلى مجموعة 

 ، مما يدل على قوتها وموثوقيتها تحت الظروف المتغيرة.KITTIمجموعة البيانات 

  YOLO ،، اكتشاف الحواف، تركيب المنحنى، اكتشاف الأشياءرالقيادة الذاتية، اكتشاف المسا الكلمات الافتتاحية:
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1. INTRODUCTION 

The complexity of autonomous driving environments is a major obstacle, as they are subject 

to various changes [1]. These changes encompass a multitude of factors, each presenting a 

formidable challenge for advanced driver assistance systems (ADAS) such as lane detection, object 

detection, traffic sign recognition, and collision avoidance. The intricacy of autonomous driving 

environments is a critical bottleneck in this field [2] [3]. Lane line detection is the fundamental 

component of ADAS as lots of traffic rules are based on the lane line mark [4-6]. However, missing 

or obscured lane lines pose significant detection challenges [7]. These issues necessitate advanced 

algorithms for accurate, real-time, and robust lane detection. Curvature fitting plays an 

indispensable role in enhancing the performance of lane detection systems in autonomous vehicles 

[3]. It involves the use of mathematical models to accurately represent the curvature of detected 

lanes [8]. This is crucial as roads are rarely straight and often have varying degrees of curvature.  

[7] and [9] introduce a method for detecting both straight and curved lanes under various 

conditions. Their methods are adaptable and versatile, catering to a wide range of scenarios. 

One main requirement for intelligent vehicles is that they need to be able to perceive and 

understand their surroundings in real time [1] [10]. YOLO's efficiency in real-time object detection, 

particularly vehicles, complements lane detection's ability to identify drivable areas. This 

combination provides a holistic view of the road environment, enhancing decision-making 

capabilities in various driving scenarios. [11-13] put forward a novel and efficient approach for 

detecting objects in self-driving vehicles. Their methods leverage the power of the YOLO 

algorithm, known for its speed and precision in real-time object detection. This research makes 

contributions to the field of autonomous driving systems in three key areas: 

1. Robust lane detection: The development and implementation of a multi-stage lane detection 

algorithm that effectively identifies and tracks lanes under various driving conditions. This 

is achieved through a series of computer vision techniques, including grayscale conversion, 

bilateral filtering, OTSU thresholding, and Canny edge detection. The detected lanes are 

further refined using ROI extraction, bird’s eye view transformation, and a sliding window 

approach. 

2. Curve fitting for road geometry: The application of a second-order polynomial for curve 

fitting provides a mathematical model that accurately represents the curvature of detected 

lanes. This offers crucial insights into the geometry of the road, enhancing the vehicle's 

ability to navigate safely and efficiently. 

3. Object detection for situational awareness: The deployment of object detection techniques 

contributes significantly to the overall situational awareness of the autonomous driving 

system. By identifying and classifying objects within the driving environment, the system 

can make informed decisions, improving safety and performance. 

The robustness and reliability of the proposed methods were validated through experiments 

on two different datasets, achieving an accuracy of 98.64% on the Tusimple and 96.92% on the 

KITTI dataset respectively, demonstrating the potential for real-world applications. The paper is 

organized in the following manner: The second section is dedicated to the presentation of related 

work. The third section explains the proposed research methodology including lane detection, 

curvature fitting, and object detection. The underlying datasets are introduced in the fourth section. 

The fifth section is where we delve into the experimental part, which includes implementation and 
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visualizations then a comparison with the previous work. Lastly, the sixth section offers a 

conclusive summary and indicates potential paths for upcoming research. 

 

2. RELATED WORK 

Numerous past researches have investigated the application of edge detectors, Hough 

transform, thresholding, and inverse perspective transformation in diverse image processing 

activities. For example, [8] introduces an advanced curve lane detection method for autonomous 

vehicles, utilizing inverse perspective transformation, OTSU threshold, and Hough transform. 

Their algorithm employs models of parabolic and circular equations within the Kalman filter to 

calculate the parameters of a curve lane.  Despite its widespread use in detecting lane markings, 

the Hough transform method often struggles to accurately identify the correct lane markings [5] 

[15]. Therefore, Jung and Youn [7] in their paper, introduced a method for lane detection that 

utilizes spatiotemporal images. This approach proved effective in identifying lanes with significant 

curvature, changes in lane direction, roads at night, obstructions, and even lens flare, thanks to the 

consistent measurement of lane width along each scanline. Similarly, [9] presents a real-time lane 

detection method for both straight and curved lanes, adaptable to various conditions. It uses Hough 

transform optimization and the Kalman filter for accurate lane identification and tracking with 

detection of 96.3% accuracy for straight lanes, and 97.74% for curved lanes at 16.7 fps. 

In their work, Zhang et al [2] propose a spatiotemporal network that utilizes a pair of 

Convolutional Gated Recurrent Units (ConvGRUs) for the task of lane detection in difficult 

scenarios.  [16] use a lightweight CNN model as a feature extractor on KITTI and Caltech datasets 

containing small image patches of dimension 16 × 64 pixels. A non-overlapping sliding window 

approach is employed to achieve fast inference. After the predictions are made, they are clustered 

and fitted with a polynomial to model the lane boundaries. [17] preprocess the input image by 

dividing it into several slices along the vertical axis and extracting a set of features for each slice 

which are then fed into a deep network that combines a CNN and a fully connected network to 

classify each pixel as a lane or non-lane. The authors of [5] suggest a hierarchical deep Hough 

transform (DHT) that amalgamates all lane characteristics in an image into the Hough parameter 

space. They enhance the method of point selection and include a dynamic convolution module to 

efficiently distinguish between lanes in the source image. Philion [18] presents a unique fully 

convolutional model for lane detection that directly decodes lane structures and employs 

unsupervised style transfer to adapt to new conditions, ensuring robust performance with accuracy 

reaching 95.2%. 

Detecting lanes and vehicles offers distinct yet complementary insights into the road scene. 

While lane detection pinpoints the drivable area of the road, vehicle detection identifies other road 

users. The integration of these two aspects provides a more holistic understanding of the road scene. 

Therefore, [11] addresses the development of lane and obstacle detection for self-driving cars. The 

proposed algorithm was tested using real-time videos and the Tusimple dataset with an accuracy 

of 97.91% and 81.90% for lane and obstacle detection respectively. [12] propose a new, efficient 

design for object detection in autonomous vehicles using the YOLOv5. The authors adopted the 

Python platform, Roboflow tool, and Google Colab for model design, praising Roboflow’s features 

and Google Colab’s accessibility and power. The authors of [19] propose a real-time method for 

vehicle tracking and lane detection. Vehicle tracking uses a static camera and an adaptive 
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background subtraction technique for detection, with the Kalman filter estimating the car's position. 

Lane detection, performed with an onboard camera, involves pre-processing, edge detection, and 

broken line detection. The method achieves a detection accuracy of 92.03% and a processing speed 

of 48 fps. 

3. PROPOSED METHOD 

The proposed research encompasses three fundamental aspects: lane detection, curve 

fitting, and vehicle detection as depicted in Fig. 1. Lane detection refers to the process of 

pinpointing and following the edges of lanes on a roadway, a critical task for keeping the vehicle 

in its designated lane and ensuring safe navigation. The lane detection pipeline compromises 

various techniques, including filtering, edge detection, Hough transform, ROI extraction, and then 

inverse perspective transformation to obtain a bird's eye view. Curve fitting is the concept of 

constructing a curve that best fits a series of data points. In the context of this work, curve fitting 

could be used to model the trajectory of the detected lanes, especially in scenarios where the lanes 

are not straight but curved. Polynomial fitting, particularly quadratic, is commonly used for this 

purpose. Vehicle detection is another vital aspect of autonomous driving and ADAS, ensuring the 

vehicle's ability to perceive other vehicles in its vicinity to avoid collisions and maintain safe 

distances. Techniques for vehicle detection can range from traditional computer vision methods, 

such as Haar cascades and Histogram of Oriented Gradients (HOG), to more advanced deep 

learning-based approaches like YOLO. Together, these three aspects form the backbone of the 

proposed work, each contributing to creating a comprehensive and robust system for autonomous 

driving. The integration of these components is expected to result in a system capable of accurately 

detecting lanes, predicting their trajectory, and identifying other vehicles, thereby ensuring safe and 

efficient navigation. 

 

Fig. 1. Autonomous vehicle system 

A flowchart that outlines an algorithmic process for analyzing video frames, with a focus 

on lane detection and vehicle tracking was presented in Fig 2. It begins by reading frames from a 

video source and then proceeds to detect lanes within those frames. Afterward, ROI is extracted, 

focusing on the relevant area of the road. Perspective transformation adjusts the view to a bird's-

eye perspective, enhancing accuracy in lane detection. The sliding window search technique is 

employed to locate lane lines or other features efficiently. This technique involves dividing the 

image into smaller windows and analyzing each window to find relevant features. At a decision 

point, the system checks whether it has previously detected a lane line. If so, it refines the lane line, 

fits its curvature, and detects vehicles. If no previous line was detected, the sliding window search 

is reinitiated. The process concludes with the final step.  
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3.1 Lane Detection 

A sequence of steps is often followed to analyze and interpret image data for lane detection. 

The process begins with the conversion of a colored image into a grayscale one, simplifying the 

data without losing essential information. This grayscale image then undergoes a smoothing 

process using a bilateral filter, which is designed to reduce noise while preserving edges, thereby 

enhancing the quality of the image for further processing. Following this, OTSU’s method [4] is 

applied to segment the smoothed image. This method separates ROI by optimizing intra-class 

variance, a measure of the variability within classes [8].   

 

 Fig 2. Lane detection and vehicle tracking flowchart 

 

Concurring with Suddamalla [20], our preference leans towards the Canny technique for 

efficient edge detection. This is because, upon conducting experiments with a range of edge 

detection filters, it’s noticed that the Canny approach produces edges that are not only thin (limited 

to a single pixel in width) but also better connected, a characteristic due to use of hysteresis-based 

thresholding. It uses a multi-stage process to detect a wide range of edges in images [21] which 

involves smoothing the image with a Gaussian filter, computing the gradient of the image, applying 

non-maximum suppression, and using double thresholding and edge tracking by hysteresis.  The 

Hough transform identifies straight lines based on the principle of accumulating pixel points, 

resulting in a superior line-fitting outcome [3][19][21]. However, the Hough transform, while 

effective, can often detect multiple erroneous lines. To mitigate this issue and decrease both 
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computational time and complexity, it's essential to discard these incorrect lanes. For example, post 

the application of the Hough transform on the binarized frame, the two lengthiest lines are chosen 

to bypass this problem. A comprehensive pipeline is given in Fig. 3, contributing to the overall lane 

detection method. 

 

Fig. 3. Lane detection framework 

ROI is usually defined as a convex polygon that includes the lane lines and their immediate 

surroundings while excluding unrelated objects and features. It's noted that the essential details 

about lane markings are predominantly located in the bottom half of the image, making it 

unnecessary to process the entire image for lane detection [8] [14]. This observation is especially 

applicable to videos in datasets, which are often captured with the camera centrally placed behind 

the windshield. As the vehicle advances, the road consistently remains in front, making the lower 

part of the image the suggested ROI. Choosing the appropriate ROI can efficiently reduce 

computational time and minimize environmental noise [4]. This involves selecting a trapezoidal 

region within the image that encompasses the lane area of interest. The trapezoidal shape accounts 

for the perspective distortion caused by the camera’s position relative to the road surface. Once the 

manual ROI is established, it serves as a template for subsequent frames. During real-time lane 

detection, the automated process dynamically adjusts the ROI based on the initial manual 

definition. By combining manual setup with dynamic adjustments, the method achieves accuracy, 

real-time performance, and robustness. In perspective views, parallel lines such as lane markings 

appear to converge at a distant point. called the vanishing point. Perspective transformations are 

used to map points from one perspective (e.g., a camera view) to another (e.g., birds eye view) 

which is beneficial for lane detection. To perform a perspective transformation, we need to select 

four points in the original image which should be stretched to form a trapezoidal shape that outlines 

the desired ROI. The transformation then maps these four points to a rectangular shape, effectively 

flattening the perspective as investigated in Fig. 4. 

 

Fig. 4. ROI and perspective transformation 
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The sliding window method plays a pivotal role in lane detection algorithms, particularly 

for identifying lane markings in images. Its purpose is to systematically scan an image and identify 

regions likely to contain lane markings. The process begins by defining a sliding window as a 

rectangular region with fixed dimensions (width and height). Starting from the bottom of the image 

(near the vehicle), the first window is placed at a reasonable height within the ROI (e.g., near the 

bottom of the ROI). The ROI typically encompasses the area where lane markings are expected to 

appear. Within each window, a histogram of pixel intensities is computed. This histogram 

represents the distribution of lane-related features (such as gradients or color values). The peaks in 

the histogram correspond to lane markings. These peaks indicate areas where lane lines are likely 

to be present. The window position is updated based on the peak location. Specifically, the window 

is centered around the peak, ensuring that it aligns with the lane markings. The next window is then 

constructed based on the previous one. This sliding process continues upward, with a predefined 

step size (often overlapping with the previous window). By iteratively scanning the image using 

sliding windows, the entire lane region is covered. The sliding window method then complements 

edge detection, Hough transform, and curve fitting to ensure robust lane tracking even in 

challenging scenarios. 

3.2 Curvature Fitting 

The Hough transform method is a commonly used algorithm for detecting lanes in many 

previous studies. However, this method was originally designed for straight-line recognition and 

falls short when it comes to identifying curved lanes [8] [15] [22]. The accurate detection and 

modeling of road lane curvature, especially in high curvature radius scenarios, play a pivotal role 

in enhancing the performance and safety of autonomous driving systems. In this context, the 

utilization of second-degree polynomials for curvature fitting has emerged as a promising approach 

to effectively capture the intricate dynamics of curved lanes. By employing second-degree 

polynomials, which offer a more flexible and adaptive curve-fitting model compared to linear 

methods, we can better approximate the complex shape of lanes with sharper curvature radii. This 

method allows for a more nuanced representation of curved road geometry, enabling autonomous 

vehicles to navigate challenging bends with increased precision and reliability. Moreover, the use 

of second-degree polynomials for curvature fitting facilitates the incorporation of curvature 

constraints and smoothness criteria, essential for ensuring smooth and natural lane tracking in high 

curvature radius environments. However, it's important to note that this process assumes a 

relatively flat road surface and may not be accurate on hilly or uneven terrain. Despite this, 

curvature calculation remains a fundamental component in the lane detection pipeline. A second-

degree polynomial, also known as a quadratic function, can be represented by the following 

equation 

𝑦 = 𝐴𝑥2 + 𝐵𝑥 + 𝐶    (1) 

where 𝐴, 𝐵 and 𝐶 are constants, and 𝑥, 𝑦 are the variables. In the context of lane detection, 

the 𝑥 and 𝑦 coordinates correspond to the pixel positions in the image. The constants 𝐴, 𝐵 and 𝐶 

are determined based on the detected lane points in the image. Once these constants are determined, 

equation 1 will be used to predict the 𝑦 position for any given 𝑥 position along the lane, effectively 

fitting a curve to the lane. This method is particularly effective for detecting curved lanes as it can 
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model the curvature of the lane, unlike methods designed to detect straight lines. By fitting a 

curvature to the lane, the system can accurately predict the path of the lane, even when it curves, 

enhancing the accuracy and reliability of the lane detection process. To find the curvature of a lane, 

we can use the formula for the curvature of the lane based on a second-degree polynomial equation. 

The curvature 𝑘 at a specific point (x) is given by the following formula: 

              𝐾 =  
|𝑦"|

(1 + (𝑦′)2)3/2
                                            (2) 

where 𝑦 = 𝑓(𝑥)  is the function describing the curve, 𝑦′ is the first derivative of the 

function, representing the slope of the tangent line to the curve at a given point, 𝑦" is the second 

derivative of the function, representing how the slope of the tangent line is changing. We then 

compute the first and second derivatives as: 

𝑦′ = 2 𝐴𝑥 + 𝐵                                 (3) 

and           𝑦′′ = 2𝐴.                  (4) 

Substituting these into the curvature formula gives: 

           𝐾 =  
|2𝐴|

(1+(2𝐴𝑥+𝐵)2)3/2       (5) 

where, 𝑥 would be the x-coordinate at the point where the curvature is to be determined 

(typically the bottom of the image, where the car is located), and 𝐴 , 𝐵 are the coefficients of the 

second-degree polynomial that was fit to the lane lines. According to [14], the radius of curvature 

𝑅 is calculated by taking the inverse of the curvature 𝐾 as indicated by equation 6. 

         𝑅 =  
1

𝐾
      (6) 

This computation yields the radius of the smallest possible circle that can be drawn tangent 

to the curve at a specific point. This serves as an indicator of the sharpness of the curve's turn at 

that point. A smaller radius indicates a sharper turn. It is worth mentioning that, the units of the 

curvature will be in pixels, so a conversion factor may be needed to convert this to real-world units 

(like meters) based on the resolution of the image and the known size of objects in the image. By 

utilizing mathematical models to fit the curvature of lanes, the system can better understand and 

predict the complex road geometries, such as curves and bends, that vehicles encounter. These 

equations provide a more accurate representation of lane shapes, enabling the system to anticipate 

lane deviations more effectively and navigate challenging road scenarios with greater precision. 

The incorporation of curvature fitting equations not only improves the system's ability to interpret 

and follow lane markings in complex environments but also enhances its overall performance 

metrics. By accurately capturing the curvature of the lanes, the system can make more informed 

decisions, such as adjusting steering angles or lane-keeping maneuvers, leading to smoother and 

more stable driving behavior. Additionally, the use of curvature fitting equations can help reduce 

false positives or negatives in lane detection, improving the system's reliability and reducing the 

risk of errors in autonomous driving applications. 
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3.3 Object Detection 

In the context of self-driving vehicles, detecting objects can offer crucial context about the 

environment around the vehicle, significantly influencing its decision-making process [23]. The 

latest progress in deep learning has demonstrated significant effectiveness in this area. Among the 

numerous available frameworks, we have opted to use the YOLO object detector as the 

foundational framework for vehicle recognition in autonomous driving. In contrast to conventional 

techniques that necessitate multiple iterations for object detection, YOLO achieves this in just one 

iteration, thereby enhancing speed while maintaining precision [1] [13]. YOLO has been trained 

with an extensive collection of images and can detect a wide variety of objects [24]. This can make 

the system more robust to different road conditions and scenarios [12]. YOLO's ability to process 

images at depth layers enables it to extract complex features from input images. Its training on over 

80 different classes, allows it to accurately identify and classify vehicles in various driving 

conditions.  

4. DATASET 

To assess the effectiveness of various techniques, it's crucial to set benchmarks and evaluate 

algorithms used for detecting lanes and roads. In our lane detection algorithm, the input typically 

consists of images or video frames captured by a camera mounted on a vehicle. These input images 

serve as the basis for our algorithm to analyze and detect lane markings. By specifying the type 

and resolution of the input images, we can provide a more comprehensive description of the dataset 

used in the evaluation. Several datasets are publically available for lane detection, such as the 

Tusimple, and KITTI datasets. The challenging Tusimple lane marking dataset comprises 3,626 

training and 2,782 testing clips [15]. These clips are recorded under varying weather conditions 

and at different times. Every one-second video segment consists of 20 successive frames, with only 

the lane lines in the 20th frame officially marked as the ground truth [25]. KITTI Road dataset 

encompasses 6 hours of varied traffic situations, captured at a frequency of 10-100 Hz using an 

array of sensors such as high-definition cameras, a 3D laser scanner, and an accurate GPS/IMU 

system [26]. It contains 289 training images and 290 testing images separated into three categories 

[22]. Some statistics of the underlying datasets are tabulated in Table 1. 

                                             Table 1. Dataset characteristics  

Dataset  Train Test Resolution Scenes  

Tusimple 3268 2782 1280 x 720 Highway 

KITTI 289 290 1242 x 375 Urban streets 

5. IMPLEMENTATION AND RESULTS  

The model was developed using the Python platform and Google Colab. Google Colab is a 

free platform that allows Python code execution in the cloud, has a user-friendly interface, and 

provides access to high-performance GPUs. Grayscale conversion reduces the image from three 

color channels to one, simplifying the information and minimizing the computational complexity. 

A bilateral filter from the OpenCV library was applied to the grayscale image. This filter was 
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chosen because it smooths out textures while preserving edges, which is crucial for enhancing the 

distinction of lane lines. Additionally, it exhibits superior performance in scenarios, effectively 

distinguishing between the object and the background. Utilizing this thresholding as an initial step 

before Canny edge detection can be advantageous as it aids in diminishing the noise level in the 

image, potentially enhancing the performance of the Canny algorithm. The Hough transform was 

used to identify lines within the binary edge-detected image. The ROI extraction was carried out 

manually by defining a trapezoidal region which effectively decreases the occurrence of false 

positives in lane detection. The output is fed into the perspective transformation module, where the 

image undergoes transformation based on the source and destination coordinates, and a warped 

perspective is applied to the image frame. This step offered a clearer visualization and analysis of 

lanes. Finally, the sliding window method is notably efficient as it not only pinpoints the lane lines 

but also offers an estimation of the vehicle's location concerning these lines. This was one of the 

more challenging aspects of the implementation, as it required careful tuning to ensure accurate 

lane detection. Fig. 5 illustrates the sequential steps involved in the lane detection algorithm. 

  

Fig. 5. Lane detection algorithm visualization 

 

To estimate the lane curvature, a second-order polynomial was fitted to the lane line points. 

This allowed for the calculation of the curvature radii of the lane, providing valuable information 

for steering control. Lane lines, masks, directions, and curvature radii are then embedded and 

overlaid on the original images as indicated in Fig. 6. The algorithm’s performance under varying 

road geometries, including straight paths along with left and right turns, is demonstrated. In each 

case, the detected lane is marked, and the estimated curve radius is provided.  

 

Fig. 6. Curvature estimation and directional analysis 
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This illustrates the algorithm's ability to handle different road geometries and provide 

crucial information for vehicle navigation and control. In addition to lane detection, YOLO, a real-

time object detection system was used to identify other vehicles, pedestrians, and obstacles on the 

road. This was implemented using the Darknet framework which requires careful tuning and 

optimization to achieve satisfactory performance. An example is presented in Fig. 7 where every 

object is associated with a confidence value which is used as a minimum value to filter weak and 

unwanted detections. One of the main challenges encountered during the implementation was the 

computational complexity of the algorithm, especially when incorporating the YOLO architecture.           

To address this, the implementation was optimized for efficiency, and the YOLO model was 

carefully selected and configured to balance performance and computational cost. YOLO is capable 

of detecting several cars at once due to its unique ability to partition the input image into a grid and 

forecast bounding boxes and class probabilities for each grid cell. This facilitates real-time vehicle 

detection and tracking, which is essential for decision-making processes in autonomous driving 

systems. 

 
Fig. 7. Vehicle detection using YOLO  

The effectiveness of the proposed method is assessed using Tusimple and only 195 frames 

are sourced from the KITTI dataset as demonstrated in Table 2. Using accuracy as the ratio of 

correctly detected lanes over the whole dataset allows for a direct comparison of the algorithm's 

performance across different datasets or experimental conditions. It serves as a reliable indicator 

of the algorithm's ability to correctly identify lane markings, which is essential for the successful 

implementation of lane detection in real-world applications such as autonomous driving. This 

straightforward measure simplifies the evaluation process and can be easily interpreted in terms of 

the algorithm's effectiveness in detecting lanes accurately.  Additionally, considering processing 

time as a performance metric provides insights into the computational efficiency of the algorithm, 

which is crucial for real-time applications. The method proved impressive accuracy on both 

datasets, achieving 98.64% on the Tusimple dataset and 96.92% on the KITTI dataset. Furthermore, 

the method’s efficiency is evident in the average processing times, which were 22.1 ms/frame and 

21.9 ms/frame for the Tusimple and KITTI datasets, respectively. 

Table 2. Comparison with the previous works 

Dataset Total frames 

No 

Correct 

recognition 

No. 

False 

recognition 

No. 

Accuracy 

% 

Average 

processing time 

(ms/Frame) 

Tusimple 2286 2255 31 98.64 22.1 

KITTI 195 189 6 96.92 21.9 
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Tables 3 provides a clear comparison between traditional methods [3] [11], deep learning 

approaches [18], and the proposed techniques for lane detection. It considers computational 

efficiency through processing times and hardware environments used for testing these algorithms. 

The proposed methods aim to improve accuracy while minimizing computation time compared to 

existing approaches. Traditional approaches employed by [3] and [11] surpasses deep learning 

techniques [18] in both accuracy and efficiency. The proposed method outperforms traditional 

methods, achieving an impressive accuracy of 98.64% and 96.92 % on the Tusimple and KITTI 

datasets respectively. The proposed method also demonstrates a significantly faster average 

processing time than other methods, further highlighting its efficiency and real-time applicability. 

The traditional approaches and deep learning techniques also show competitive performance, with 

accuracies above 95% and reasonable processing times. Notably, employing a GPU significantly 

reduces the processing time in some cases, as seen in deep learning [18] and traditional methods 

[11].  

Table 3. Comparison with previous works, HT, Hough Transform, SWS, sliding window search 

Method Algorithm Applied 

Dataset 

# of samples 

per dataset 

Accuracy 

% 

Average proc. 

time (s) 

Environmental Setting 

Traditional 

methods[3] 

HT 1500 

Cityspace 

pictures 

1500 95.7 0.06540 i7-6700K and 

Matlab2016a platforms 

Traditional 

methods 

[11] 

HSL + 

Sobel 

filter + 

SWS 

Tusimple 

 

 

3626 

training and 

2782 testing 

videos 

97.91 

 

 

97.91 

0.08500 

 

 

0.0021  

Intel Core i5-9300H, 

CPU@ 2.4 GHz 

 

GPU GeForce GTX TITAN 

X 

KITTI 195 85.13 0.086 Intel Core i5-9300H 

CPU@ 2.4 GHz 

Deep 

learning[18] 

FastDraw 

ResNet 

Tusimple ------ 95.2 0.06533  NVIDIA GeForce GTX 

1080, GPU 

Proposed  Bilateral 

filter + 

OTSU + 

Canny+ 

HT+SWS 

Tusimple 

 

2286 

 

98.64 

 

 

98.64 

0.0221 

 

 

0.0166 

Intel Core i7- 7700K, CPU 

and 16 GB DDR4 RAM. 

 

GPU Tesla K80 12GB  

KITTI 195 96.92 0.0219 Intel Core i7- 7700K, CPU 

and 16 GB DDR4 RAM. 

In this study, we also investigate the time variation associated with frame processing in the 

context of lane detection. Fig. 8 depicts a curve representing time intervals in ms across the 

corresponding frames. Notably, the average time aligns closely with the desired value of 22.1 ms. 

This analysis sheds light on the temporal dynamics of lane detection algorithms and provides 

insights for optimizing real-time processing in autonomous driving systems. 
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Fig. 8. Time variation over a number of frames 

Table 4  presents a concise overview of different methods, their associated accuracy, 

average processing times, and the environmental settings in which they operate. The proposed 

method using YOLOv5 achieves the highest accuracy (90.03%) while maintaining competitive 

processing time (0.89 s).  

Table 4. Comparison of object detection algorithms. 

Method Algorithm Accuracy 

% 

Average proc. 

time (s) 

Environmental Setting 

Traditional methods [11] YOLOv4 81.9 

 

81.9 

0.91 

 

0.022 

Intel Core i5-9300H, CPU@ 

2.4 GHz 

GPU NVIDIA TITAN 

Neural Networks [27] Faster R-CNN 81.6 2.0 NVIDIA TITAN X and GP106 

(DrivePX2) 

Proposed YOLOv5 90.03 0.89 GPU Tesla K80 12GB 

[11] utilizes the YOLOv4 algorithm achieving an accuracy of 81.9%, and the average 

processing time is relatively resonable at 0.91 seconds. Faster R-CNN used by [27] records a 

similar accuracy of 81.6% but exhibits a longer processing times around 2 seconds. The proposed 

method exploits YOLOv5 and achieves the highest accuracy at 90.03% and a competitive average 

processing time of 0.89 seconds. The optimization within YOLOv5 strikes an excellent balance 

between accuracy and real-time processing demands. For all methods, the  remarkable speed 

enhancement is attributed to the GPU acceleration.  

6. DISCUSSION  

In this study, we proposed a lane detection algorithm for autonomous driving systems that 

combines traditional computer vision techniques with deep learning methodologies. The algorithm 

demonstrated high accuracy of 98.64% and 96.92% on Tusimple and KITTI datasets respectively. 

The method registers relatively low processing times of 22.1 ms/frame and 21.9 ms/frame for 

Tusimple and KITTI datasets, showcasing its efficiency and effectiveness in lane detection tasks. 

When comparing our lane detection algorithm with existing strategies, we observed that traditional 

approaches and deep learning techniques also exhibited competitive performance, with accuracies 

above 95% and reasonable processing times. However, our proposed method stood out with the 
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highest accuracy and a relatively low processing time, indicating its efficiency and effectiveness in 

lane detection applications. Through the integration of advanced curve fitting techniques, such as 

higher-order polynomials and adaptive curve approximation methods, we aim to improve the 

precision and robustness of our system in detecting and navigating high curvature radii. By 

focusing on refining our curvature fitting capabilities, we are confident that the proposed work will 

be equipped to effectively handle complex driving scenarios, ensuring safe and efficient navigation 

in real-world environments. The integration of deep learning methodologies, such as the YOLO 

object detection system, enhances the algorithm's ability to identify vehicles, pedestrians, and 

obstacles on the road, crucial for decision-making processes in autonomous vehicles. Moving 

forward, there are several potential areas for further research and enhancement of lane detection 

algorithms. One avenue for exploration is the adaptation of the algorithm to handle dynamic lane 

changes, varying road conditions, and complex scenarios. Additionally, conducting experiments on 

larger and more diverse datasets to validate the algorithm's effectiveness across a wide range of 

real-world situations would be beneficial for refining its capabilities and ensuring its applicability 

in various driving contexts. 

7. CONCLUSION 

This research has made significant strides in the field of autonomous vehicles, particularly 

in the areas of lane detection, curve fitting, and object detection. The meticulously designed lane 

detection system, which employs a series of computer vision techniques, has proven to be robust 

and reliable in identifying and tracking lanes under various driving conditions. The application of 

a second-order polynomial for curve fitting has provided an accurate mathematical model for 

representing the curvature of detected lanes. Furthermore, the deployment of object detection 

methods has improved the comprehensive situational understanding of autonomous driving 

systems by efficiently identifying and categorizing objects in the driving scene. The proposed 

methods have been validated through rigorous experiments on the Tusimple and KITTI datasets, 

achieving impressive accuracies of 98.64% and 96.92% respectively. These results underscore the 

potential of the proposed methods in revolutionizing transportation through the advancement of 

autonomous vehicles. The system can collaborate with other autonomous cars and infrastructure, 

such as traffic management systems and smart cities, to promote sustainable and efficient 

transportation. Future work will focus on extensive real-world testing to validate the robustness of 

the proposed methods. Additionally, integration with other ADAS features will be pursued to 

enhance the autonomous driving system's overall performance and safety.  
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