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 ABSTRACT  

 
 In K-distribution sea clutter environments, maintaining a constant false 

alarm rate (CFAR) is essential due to the unpredictable and dynamic 

nature of the background. However, CFAR detectors often face reduced 

performance in scenarios with multiple targets due to a masking effect. 

To combat this issue, a technique known as "Space-Based Linear 

Density Clustering for Applications with Noise" (Lin-DBSCAN) is 

employed alongside CFAR. Lin-DBSCAN is adept at pinpointing both 

interference targets and sea spikes, typically appearing as outliers, in the 

designated areas before and after the cell under test (CUT). By 

integrating Lin-DBSCAN, these irregular signals are efficiently 

identified and segregated from the general sea clutter, significantly 

improving target detection accuracy. Extensive simulations under 

various conditions—varying false alarm rates, target numbers, and 

shape parameters—have shown that Lin-DBSCAN-CFAR outperforms 

traditional CFAR methods. Additionally, it reduces computational 

complexity compared to its counterpart, DBSCAN-CFAR. These 

enhancements significantly boost the practicality and efficiency of 

CFAR detection in K-distribution sea clutter scenarios, offering a robust 

solution to the challenges posed by multiple target environments. 
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 الملخص 

( أمرًا ضرورياً بالنظر CFAR، يعُد ضمان استقرار معدل الإنذار الخاطئ )Kفي بيئات الفوضى البحرية المعتمدة على توزيع  

من انخفاض حاد في الأداء عند التعامل مع أهداف متعددة    CFARإلى التغير المستمر في البيئة المحيطة. تعاني أنظمة كشف  

بسبب تأثيرات التمويه. لمواجهة هذه التحديات، نستخدم نهجًا يعُرف بـ "تجميع الكثافة الخطية المستندة إلى الفضاء للتطبيقات في  

( الضوضاء"  مع  Lin-DBSCANظروف  بالاقتران   )CFAR  يبرز  .Lin-DBSCAN   الأهداف تحديد  على  قدرته  في 

-Lin(. من خلال دمج  CUTالمتداخلة والتكوينات البحرية، التي تظهر كنقاط شاذة ضمن المناطق المجاورة للخلية قيد الفحص )

DBSCANلأساسية، مما يعزز بشكل كبير دقة تحديد الأهداف. المحاكاة  ، تعُزل الإشارات الشاذة بكفاءة عن الفوضى البحرية ا

أن   تظُهر  الشكل،  الأهداف ومعاملات  الخاطئ وعدد  الإنذار  في معدلات  تغييرات  تشمل  متنوعة،  في ظروف  -Linالمفصلة 

DBSCAN-CFAR    لـ التقليدية  الطرق  على  واضح  بشكل  يتفوق  استخدمناه  نهجنا  CFARالذي  يقلل  ذلك،  إلى  بالإضافة   .

. هذه التحسينات الجوهرية تحُسن من فعالية وجدوى نظام كشف  DBSCAN-CFARالمستخدم من التعقيد الحسابي مقارنةً بنظام  

CFAR  في بيئات الفوضى البحرية بتوزيعK .مقدمة حلولًا فعالة للتحديات المتعلقة بالأهداف المتعددة ، 

-Lin، الخلية قيد الاختبار ،التجميع الفضائي المبني على الكثافة الخطية ،الثابتمعدل الإنذار الخاطئ  -الكلمات المفتاحية : 

DBSCAN-CFAR، SO-CFAR . 

1-INTRODUCTION 
 

     The K distribution has emerged as a highly reliable method for high-resolution simulation and 

modeling of sea clutter, surpassing traditional statistical distributions like the Rayleigh, Weibull, 

and lognormal models in effectively capturing the statistical nature of sea clutter [1]. This model 

assumes that sea clutter amplitude conforms to the Rayleigh distribution (known as the speckle 

component) at every distance point, while its intensity is influenced by the gamma distribution. 

The K-distribution’s capability to accurately reflect the scattering mechanism of clutter has been 

extensively verified through practical tests and real-world data analysis [2]. These thorough 

assessments have proven the model’s effectiveness and dependability in representing the intricate 

features of clutter, thereby confirming its valuable application in a variety of real-world settings 

[27, 25]. 

       Radar systems primarily function to identify targets, and Constant False Alarm Rate (CFAR) 

processors play a pivotal role in enhancing target detection efficacy [5]. These processors, known 

for their proficiency in maintaining a steady rate of false alarms, significantly boost detection 

probabilities. 

     Numerous studies have explored various CFAR processors that utilize the sliding reference 

window approach. These processors are instrumental in automating target detection through 

statistical analysis of the surrounding clutter. Leveraging insights from extensive research [9], [20], 

this method calculates dynamic thresholds compared against values from the Cell Under Test 
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(CUT). This process is critical for the efficient differentiation and recognition of targets in a variety 

of environments, as corroborated by multiple studies [10, 21]. 

       To effectively address the challenge of detecting multiple targets amidst complex backgrounds 

such as K-distribution marine clutter, where the phenomenon of target masking is pronounced, a 

nuanced approach to background noise level assessment is essential. Traditional mean-level 

processors like Smallest-Of CFAR (SO-CFAR) [22], Average Cell CFAR (CA-CFAR) [12], and 

Greatest-Of CFAR (GO-CFAR) [13] may not deliver optimal detection performance in such 

scenarios. The presence of interfering targets within the reference window often leads to an 

increased likelihood of missing targets [11].  

          To mitigate this issue, classification-based processors, specifically the CFAR Ordered 

Statistics (OS-CFAR), have been developed. OS-CFAR operates by sorting the sampled values in 

the reference window and selecting a reference cell based on a predefined range [22]. This method 

excludes a fraction of high amplitude reference cells to better represent the average power clutter. 

In this process, sea spikes and interfering targets within the reference window are treated as outliers. 

Unlike the mean-level processors (SO, GO, and CA-CFAR), sorting-based processors like OS-

CFAR demonstrate superior performance in multi-target situations. However, their effectiveness 

relies on prior knowledge regarding the distribution and number of interference targets. This refined 

approach to target detection ensures a more accurate assessment of the background noise level, 

crucial for environments with complex interference patterns [20].  

Environments with complex interference patterns [20]. Machine learning, a field that 

intertwines various disciplines, has seen remarkable growth in recent years. This surge in interest 

is largely due to its wide application across different academic areas, particularly through 

technologies like clustering algorithms, Artificial Neural Networks (ANN), and deep learning [23]. 

Key among these technologies is the clustering algorithm, which comprises methods like Density-

Based Spatial Clustering of Applications with Noise (DBSCAN), Local Outlier Factor (LOF), k-

means, and isolation forests. These algorithms play a pivotal role in machine learning, as indicated 

in several studies [11,14, 24, 7]. 

          One significant application of clustering algorithms is in radar target recognition, especially 

in environments with non-uniform jamming. They are especially effective in multi-target 

situations. For instance, a modified version of the CA-CFAR (Constant False Alarm Rate) 

approach, which integrates the Grubbs criterion, has shown promise in these scenarios, as 

documented in [28]. However, it’s crucial to recognize the limitations of Grubbs’ criterion. While 

effective in identifying a single outlier in datasets with a near-normal distribution, it falls short of 

achieving optimal detection in K-distribution disorders, which is a common challenge in marine 

environments. 

         This limitation underscores why only a few studies have successfully applied clustering 

techniques to address multi-target CFAR detection in marine environments with K-distributed 

interference [19]. The need for more research in this area is evident, as these techniques hold 

significant potential in improving detection and analysis in complex and noise-rich environments. 

          Recent advancements in Synthetic Aperture Radar (SAR) imaging have revolutionized 

applications ranging from structural monitoring to automotive radar systems, with Ground-Based 

SAR (GBSAR) and its Circular Scanning (CS) modality leading the way in high-resolution imaging 

and micro deformation sensing [29, 30]. Innovations such as a two-step CFAR-based 3D point 
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cloud extraction method, integrating maximum projection with a modified Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN), have significantly improved sidelobe 

suppression and noise reduction, enhancing point cloud accuracy against LiDAR benchmarks. 

Concurrently, the development of the F2T-CFAR algorithm, leveraging Fast Fourier Transform 

(FFT) for ship target detection, and adaptations in DBSCAN for high-resolution data, demonstrate 

significant strides in computational efficiency and accuracy in target detection and clustering [31, 

32]. 

         These technological advancements have not only streamlined the processing of complex radar 

data but also bolstered the reliability of radar-equipped systems in automotive and urban 

applications. By refining CFAR and DBSCAN algorithms for high-resolution data, these 

innovations enable more precise detection, tracking, and clutter management. This evolution 

underscores the critical role of sophisticated clustering and detection methodologies in overcoming 

the challenges associated with high-resolution SAR imaging and target detection. 

         The proposed integration of DBSCAN clustering into a sophisticated CFAR processor 

signifies a substantial advancement in terms of effectiveness and resilience, contrasting starkly with 

traditional models [11]. However, this innovation brings with it a degree of complexity. The 

computational demands of this approach are proportional to the size of the dataset, and efforts to 

optimize its performance have been confined to an O (n log n) complexity framework. To address 

these challenges, we are shifting our focus toward the creation of an innovative CFAR processor 

powered by Lin-DBSCAN clustering. Lin-DBSCAN is specifically designed to overcome the 

computational challenges of traditional DBSCAN, especially with smaller datasets, while still 

adhering to the principles of sequential programming. It combines density-based properties with 

grid-based clustering methods, representing a significant shift from examining individual data 

points to a more efficient evaluation of grid cells, thus facilitating more streamlined data 

processing. 

         In the concluding section of our introduction, we summarize our paper's key contributions, 

highlighting the innovative aspects and advancements that set our research apart. Our work is 

distinguished by several notable achievements: 

     - We introduce a groundbreaking development with the Lin-DBSCAN-CFAR processor, a novel 

approach that utilizes the Lin-DBSCAN clustering algorithm. This innovation is particularly adept 

at filtering anomalies around the Cell Under Test (CUT) without the need for prior knowledge of 

interference targets, showcasing an exceptional ability to adapt to clutter background levels in 

environments with multiple targets. 

  - Our research presents Lin-DBSCAN, an algorithm specifically designed for clustering 

geospatial data, marking a significant advancement in this field. Lin-DBSCAN is engineered for 

linear time complexity, which drastically reduces computational costs and significantly improves 

the efficiency of real-time geospatial data applications. 

   - We demonstrate our dedication to improving clustering techniques with the development of the 

Lin-DBSCAN-CFAR processor. This processor not only exemplifies our innovative clustering 

approach but also offers an effective solution tailored to meet the challenges of real-world 

scenarios, thereby promising enhanced efficiency and broader applicability across diverse practical 

contexts. 
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   In this paper, we first explore the K-distribution model of sea clutter and its detection 

using CFAR, followed by a detailed examination of the Lin-DBSCAN-CFAR implementation. 

Subsequently, we evaluate the Lin- DBSCAN-CFAR processor’s performance and results, 

culminating in a final section that presents key conclusions from the study and suggests avenues 

for future research. 
 

2. The conceptual framework of the K-distribution Sea Clutter Model and 

CFRA Detection 
 

2.1 K-distribution Sea Clutter Model 

       The K-distribution is a sophisticated model known for its exceptional accuracy in representing 

echoes from various sea surface states. It is particularly effective in analyzing scattering radiation 

at low backscatter angles [27, 25]. The probability density function (PDF) of this distribution can 

be mathematically expressed as: 

𝑓(𝑥) =
−4𝑣

Γ(𝑣)
 (𝑐𝑣)𝑣 𝑘(𝑣 − 1)(2𝑐𝑥)                                                                                      (1) 

      In this equation, 𝑐 is the scaling parameter, representing the average power of sea clutter. The 

shape parameter is denoted as 𝑣, and the range of 𝑣 indicates the "spikiness" of sea clutter. The 

term Γ(𝑣) is the gamma function, while  𝑘(𝑣 − 1) is the modified Bessel function. This model’s 

precision makes it invaluable for specific maritime applications, especially in the context of sea 

clutter analysis [ 25]. 
 

2.2-CFAR Detection 

       The primary objective of CFAR processing is to devise an adaptable threshold. This threshold 

adeptly differentiates between genuine radar targets and jamming signals. Its adaptability hinges 

on the predetermined probability of false alarms and prevailing noise levels, aiming for precise 

target detection while curtailing false alarms due to external disruptions, as outlined in [17]. 

       Following a series of filtering steps, the signal’s quadrature and in-phase components are 

further analyzed using square law processing. The resulting data then undergoes analysis within a 

sliding window setup. This configuration includes reference cells, the CUT, and guard cells, 

detailed in [26]. Assume the reference cell samples in the main window are {x1, x2, ..., xn} and in 

the sliding window are {xn + 1, xn + 2, ..., x2n}, with the reference window length denoted by N 

= 2n. In this context, the CUT has identical leading and trailing windows. The inherent spatial and 

temporal correlation within radar echoes enables effective noise level estimation using the 

reference cells adjacent to the CUT. This method is validated by the research presented in [13]. To 

counteract the effects of extended targets on detection accuracy, various CFAR techniques like GO, 

CA, and SO-CFAR employ a small number of guard cells flanking the CUT for additional 

protection. 
 

3- Lin-DBSCAN-CFAR Processor 
 

   The Lin-DBSCAN-CFAR process is an advanced method used for determining the 

background level in sea surface clutter, utilizing an ANN model. This model is specifically 
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designed to calculate the shape parameter of sea surface clutter with high accuracy. Lin-DBSCAN, 

a variant of machine learning models, is based on a density-based clustering algorithm. 

   This method hinges on two key parameters: the minimum number of points within a 

neighborhood, denoted as MinPts, and the neighborhood radius, represented as Eps. These 

parameters are integral to the discretization step, which is a critical aspect of the Lin-DBSCAN 

methodology for network modeling. The parameters Eps, the neighborhood radius, and MinPts, the 

minimum number of points within this radius, are closely associated with the discretization step in 

Lin-DBSCAN [15]. 

   Lin-DBSCAN, unlike the standard DBSCAN which focuses on each point and its 

neighborhood, identifies connected areas based on density by analyzing grid cells. The method 

involves uniformly subdividing a hyper-rectangle by overlaying a multidimensional grid. The size 

of this grid is synchronized with the chosen discretization step. In Lin-DBSCAN, this discretization 

step is directly proportional to the Eps parameter used in DBSCAN. 

Density-based clustering, as illustrated by the DBSCAN algorithm, clusters data points 

based on their spatial density, enabling the identification of natural clusters within the data without 

pre-specifying the number of clusters. In DBSCAN, core points are identified as those having a 

specified number of neighboring points within a given radius, forming the nucleus of clusters. 

These clusters are then expanded by incorporating additional points that meet the density criteria. 

Points failing to meet these density requirements are classified as noise, making this method 

particularly effective for dealing with data that has non-uniform dense distributions and identifying 

outlier points [21]. 

Grid-based clustering methods partition the data space into a finite number of cells that 

form a grid structure and treat each cell as a unit for density analysis. Cells with high density are 

grouped to form clusters. This approach significantly speeds up the clustering process by reducing 

the need for intensive distance calculations between every pair of points, making it suitable for 

very large datasets. The grid-based approach simplifies the data space into a manageable number 

of cells, allowing for efficient processing and scalability [15]. 

    The size of the grid cell in Lin-DBSCAN, denoted as ϵ , is defined by the equation  γ = 

ϵ/2 ∗ 2, where γ represents a specific constant. This equation illustrates the direct relationship 

between ϵ and γ in a two-dimensional dataset, demonstrating how the uniform discretization step 

in Lin-DBSCAN is related to the DBSCAN parameters. Fig.1 shows the relationship between ϵ 

and γ for a two-dimensional data set 
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Fig.1: Relationship between ϵ and γ for a two-dimensional dataset 

 

   The study introduces a novel CFAR processor named Lin-DBSCAN-CFAR, designed for 

detecting multiple targets in K-distributed sea clutter. This innovative processor integrates the Lin- 

DBSCAN algorithm to effectively distinguish potential targets and sea spikes, typically statistical 

outliers, from the background clutter. Lin-DBSCAN-CFAR retains the foundational structure of 

traditional CFAR processors but adds an outlier rejection feature to the detection process. A notable 

innovation in this processor is the use of in-phase and quadrature components of radar returns for 

identifying outliers with Lin-DBSCAN. This ensures that signals classified as outliers are 

consistently recognized as such even after undergoing square-law detection. The study introduces 

a novel CFAR processor named Lin-DBSCAN-CFAR, designed for detecting multiple targets in 

K-distributed sea clutter. This innovative processor integrates the Lin-DBSCAN algorithm to 

effectively distinguish. 

potential targets and sea spikes, typically statistical outliers, from the background clutter. 

Lin-DBSCAN-CFAR retains the foundational structure of traditional CFAR processors but adds an 

outlier rejection feature to the detection process. A notable innovation in this processor is the use 

of in-phase and quadrature components of radar returns for identifying outliers with Lin-DBSCAN. 

This ensures that signals classified as outliers are consistently recognized as such even after 

undergoing square-law detection. 

   Another key advancement in Lin-DBSCAN-CFAR is the calculation of the threshold 

factor a from an estimated shape parameter v, using a trained Artificial Neural Network (ANN) 

model, set against a predetermined probability of false alarm. This method contrasts with the 

closed-form solution typically employed in traditional CFAR processors for Rayleigh-distributed 

clutter. By filtering out outliers in the reference windows, Lin-DBSCAN-CFAR substantially 

improves the accuracy in estimating the clutter background level, which in turn enhances detection 

performance. 
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   In radar signal processing, the complex echo signal received within a reference window 

is described by the equation: 

𝑋 =  [𝑥1𝐼 +  𝑗𝑥1𝑄, 𝑥2𝐼 +  𝑗𝑥2𝑄, . . . , 𝑥𝑁𝐼 +  𝑗𝑥𝑁𝑄]                                    (2) 

where N = 2n represents the length of the reference window. Furthermore, when each range 

unit sample undergoes processing through a square law detector, the resultant signal is given by: 

𝑥𝑖 = 𝑥𝑖𝐼
2 + 𝑥𝑖𝑄

2                                                                               (3) 

  where i ranges from 1 to N. This formulation captures the essential components of the 

radar received signal and its subsequent processing as shown in the Fig.2. 

 

              Fig.2: Block diagram of the proposed Lin-DBSCAN-CFAR processor 

 

   The Lin-DBSCAN-CFAR processor, used in signal processing, employs a sophisticated 

clustering technique to differentiate between normal data points and outliers in a set of signal 

samples. This method is vital in determining the background level of clutter in the CUT by 

identifying and excluding outliers. 

 In this process, a complex signal X with N samples is analyzed. If an index in signal X is 

identified as an outlier, the corresponding sample XM in signal xi is also classified as an outlier. 

By removing these outliers from Xi and averaging the remaining samples, the Lin-DBSCAN-

CFAR processor can estimate the background clutter level in the CUT. The equation for this 

estimation is as explained in the reference [27]. 

𝑍𝐿𝑖𝑛−𝐷𝐵𝑆𝐶𝐴𝑁 = ∑
𝑋𝑖

𝑥𝑚

𝑁−𝑀

𝑖=1

  , 𝑖 = 1,2, … , 𝑁 𝑤ℎ𝑒𝑟𝑒 𝑀 ∈ [𝟏 , 𝑵]                (𝟒) 

     Here, M represents the number of outliers isolated using this clustering technique. The 

decision-making process of the Lin-DBSCAN-CFAR processor is encapsulated in a binary 

hypothesis test, concisely described by the following equation: 

𝑋0 ≶𝐻0

𝐻1
𝑎

𝑁 − 𝑀
∑

𝑋𝑖

𝑥𝑚

𝑁−𝑀

𝑖=1

  , 𝑖 = 1,2, … , 𝑁 𝑤ℎ𝑒𝑟𝑒 𝑀 ∈ [𝟏 , 𝑵]                 (𝟓) 

    In tis formula, 𝐻1 signifies the presence of a target within the CUT, while 𝐻0 indicates 

the absence of a target. 𝑋0 and a represent the actual values of the CUT and the threshold factor, 
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respectively. This approach allows for a precise and reliable identification of significant signal 

components, enhancing the effectiveness of the processor in signal detection tasks. 
  

 

Algorithm.1 presents the detailed pseudo-code for the Lin-DBSCAN-CFAR processor, 

utilizing the specified ingredients 

 

Algorithm.1 Proposed Lin-DBSCAN-CFAR Detection Method 

 
1: Input: Reference cell count: N , Guard cell count: M , Complex radar return samples in     

reference window: (x1I + jx1Q), . . . , (xNI + jxNQ), DBSCAN clustering specifics: Eps and MinPts 

2: Output: Determination of target presence: Either H1 (target detected) or H0 (no target 

detected). 

3: procedure 

4: Initialize empty cluster set: W = ∅. 

 

5: Transform each complex radar sample into a 2D point to

 create dataset D = 

{(x1I , x1Q), . . . , (xNI , xNQ)}. 

6: for each point p in dataset D do 

7: if p is already processed then 

8: Skip to the next point. 

9: else 

10: Evaluate the number of points within Eps-distance of p, denote as |NEps(p)|. 

11: if |NEps(p)| < MinPts then 

12: Label p as a border point or outlier. 

13: else 

14: Classify p as a core point and assign all points in its Eps-neighborhood to cluster W 

.           15: for each unprocessed point q in the Eps-neighborhood of p do 

16: if |NEps(q)| ≥ MinPts then 

17: Include its neighborhood points in cluster W . 

18: end if 

19: end for 

20: end if 

21: end if 

22: end for 

23: Lin-DBSCAN clustering outcome. 

24: Compute the clutter level ZLin−DBSCAN based on Equation (4). 

25: Determine target detection (H1 or H0) according to Equation (5). 

26: end procedure 

 

 

    Previous studies indicate that to create smaller clusters and reduce the impact of outliers, 

the value of MinPts should not be excessively large or small. In general, for two-dimensional data, 
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MinPts = 4 is appropriate. Several methods have been proposed to determine the value of the 

second parameter Eps, including equalization histograms and normalized density lists [15]. The 

value of Eps is estimated based on the characteristics of the sea clutter data [9, 3]. In general, the 

optimal value is considered to be Eps = 2, as suggested in previous works [7]. 
 

4- Evaluation and Results 

In this section of our research paper, we delve into a comprehensive analysis and 

comparative study of a range of signal processing algorithms: SO, GO, OS, CA, DBSCAN, and 

Lin-DBSCAN-CFAR. Our focus is centered on unraveling the complexities and evaluating the 

impacts of interference in scenarios involving multiple targets. 

     To provide a thorough understanding, we have conducted extensive simulations. These 

are designed to showcase the detection capabilities of the Lin-DBSCAN-CFAR processor, setting 

it in comparison with its counterparts such as SO, GO, CA, OS, and the traditional DBSCAN-

CFAR. Our simulations encompass a wide spectrum of shape parameters, probabilities of false 

alarms, and varied multi-target situations. The methodology behind these simulations is rooted in 

the use of MATLAB 2019a on a Windows 8 64-bit system, powered by a 2.40 GHz Intel Core i7 

processor and equipped with 6 GB of RAM. This section aims to present a detailed and nuanced 

understanding of the effectiveness and superiority of these processors in complex and realistic 

operational environments. 
 

4.1- Impact of Interference in Multi-Target Scenarios 

In our study, we focused on analyzing the impact of interference targets within reference 

cells, specifically centering a primary target in the CUT for in-depth examination. We assumed 

these interference targets were of equal strength to the primary target. Following the methodology 

outlined in [27], we set the shape parameter ’v’ to 2.02. 

Our analysis compared Lin-DBSCAN-CFAR and DBSCAN-CFAR, adhering to parameters 

from [27]: using 64 reference cells (N) and 4 guard cells (M), Eps = 2, MinPts = 4 for both 

algorithms, a k value of 60 for OS- CFAR, and setting a Pfa of 10−4. 

We conducted extensive simulations over 105 Monte Carlo iterations, testing various SNR 

for each CFAR processor. 

    Our results, illustrated in Fig.3, show how the Probability of Detection varies with 

different SNR levels under varying counts of interference targets, while maintaining constant shape 

parameters and false alarm probabilities. In scenarios using Lin-DBSCAN-CFAR and DBSCAN-

CFAR, we found that an increase in interference targets minimally impacted detection probability. 

This resilience is attributed to their efficient filtering of interference targets as extraneous factors, 

without needing prior knowledge of their presence. Both Lin-DBSCAN-CFAR and DBSCAN-

CFAR exhibited remarkably similar detection performances. 

  Fig.4 demonstrates that CA, GO, SO, and OS-CFAR processors generally experienced a 

decrease in detection probability with an increased number of interference targets. However, OS-

CFAR maintained its effectiveness, likely due to its ability to eliminate interference targets using 

prior information. These findings suggest that Lin-DBSCAN-CFAR is effective against a high 

count of interference targets, offering comparable performance to DBSCAN-CFAR, but with less 

complexity. 
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Fig.3: A comparison of the probabilities of detection with different numbers of interference 

targets for Lin-DBSCAN-CFAR and DBSCAN-CFAR (a) m=1, (b) m=5. 

 

Fig.4: A comparison of the probabilities of detection with different numbers of interference 

targets for CA, SO, GO, OS-CFAR (a) m = 1. (b) m = 2. (c) m = 4. (d)m =5. 
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4.2- Effects of Different Shape Parameters 

In our study, we concentrate on evaluating the performance of CFAR processors through 

extensive Monte Carlo simulations. These simulations are designed to assess the detection 

capabilities of these processors, with a special emphasis on the influence of different shape 

parameters, while maintaining a constant probability of false alarms. The specific settings for these 

simulations include overlaps (m) set to 5, a Pfa = 10−4and utilizing N = 64 and M = 4. 

The primary goal of our research is to thoroughly understand how varying shape parameters 

affect CFAR detection in diverse sea clutter environments. We meticulously examine shape 

parameters at values of 0.201, 0.502, 1.023, 6.027, 10.109, and 20.121. This analysis aims to 

determine the impact of these parameters on the efficiency of CFAR detection processors and their 

adaptability in various sea clutter scenarios 

       In one part of our study, depicted as Fig.5, we illustrate the correlation between detection 

probability and Signal-to-Noise Ratio under the specified shape parameters, keeping overlaps and 

the probability of false alarms constant. Our observations indicate that the detection performance 

generally improves with higher shape parameters. Specifically, we notice a significant decline in 

detection probability with a shape parameter below one, attributed to increased sea peaks, as 

observed in both Lin-DBSCAN-CFAR and DBSCAN-CFAR algorithms Another aspect of our 

analysis, shown as Fig.6, offers a more comprehensive examination. It reveals that for CA, SO, 

and GO-CFAR algorithms, the detection probability tends to approach zero when the shape 

parameter is below one. However, their performance markedly improves when the parameter 

exceeds this threshold. Interestingly, the OS-CFAR method consistently exhibits superior detection 

probability across all tested shape parameter settings, highlighting its effectiveness in such 

conditions. 
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Fig.5: Probability of detection with a different number of ship parameter for for Lin-DBSCAN-

CFAR and DBSCAN-CFAR (a) v=0.2, (b), v=0.5, (c) v=1,(d) v=20.1 
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Fig.6: Probability of detection with a different number of ship parameter for CA, SO, GO, 

OS-CFAR (a) v=0.2, (b), v=0.5, (c)v=1, (d) v=20.1. 

 

 4.3- The effect of the probability of a false alarm 

   In this detailed examination, we evaluate the performance of different CFAR processors, 

emphasizing their dependability and resilience across a range of false alarm probabilities. We 

analyze four specific false alarm probabilities: Pfa = 10−2, Pfa = 10−3, Pfa = 10−4 and Pfa =10−5. 

Our study maintains constant variables such as the number of interfering targets (m = 5) and system 

parameters (N = 64, M = 4), while also considering specific values for the shape parameter.  

   The data, illustrated in Fig.7, highlights the relationship between the detection probability 

and the SNR for these varying Pfa values. This graph is crucial for understanding how CFAR 

processors perform under different false alarm conditions. It is observed that the detection 

probability for both the DBSCAN-CFAR and Lin-DBSCAN-CFAR processors consistently 

increases with the SNR, which ranges from 5 to 30 dB in each simulation. 

 

  Fig.8 demonstrates an interesting trend: as the probability of false alarms decreases, there 

is a noticeable drop in detection performance. Despite this, both Lin-DBSCAN-CFAR and 

DBSCAN-CFAR processors outperform their counterparts across all tested false alarm 

probabilities. These results confirm the exceptional reliability and robustness of the Lin-DBSCAN-

CFAR and DBSCANCFAR processors. They demonstrate superior performance compared to other 
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CFAR processors, making them highly effective and dependable in various detection scenarios, 

particularly those with variable false alarm probabilities. This study reaffirms the efficiency of 

these proposed CFAR processors as resilient and reliable options for detection applications. 

 

 

Fig.8: Probability of detection with a different number of probability of false alarm for Lin-

DBSCAN-CFAR and DBSCAN-CFAR.(a)P fa = 10−2 (b) Pfa = 110−3 (c) Pfa = 110−4,(d) Pfa 

=10−5 
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Fig.7: Probability of detection with a different number of probability of false alarm for CA, SO, 

GO, OS-CFAR. (a)P fa = 10−2 (b) Pfa = 10−3 

 

5-Aalysis of Computational Complexity 

The complexity of the process in DBSCAN is O(n2)., which has led to the emergence of 

numerous algorithms aimed at enhancing its execution time. These include FDBSCAN [4], 

IDBSCAN [6], HDBSCAN [8], TI- DBSCAN [16], and Grid-DBSCAN [18]. Although these 

proposed algorithms do enhance execution speed in most cases, the best achievable process 

complexity is still O (n log n). As a response to this challenge, Lin-DBSCAN is proposed to further 

improve process complexity. 

The Lin-DBSCAN algorithm checks each data point in the input set once to construct and 

fill the grid. It computes indexes for the cell to which each data point belongs in each iteration, 

checking if a non-empty cell already exists in the hash map of the grid. The total cost of this 

operation is O(n), where n is the total number of data points in the set. This cost efficiency is 

achieved because the hash map keeps the average access cost of a cell constant. In the collection 

phase, the Lin-DBSCAN algorithm accesses each cell only once. Therefore, the computational cost 

of the filling procedure is related to the number of non-empty cells in the grid, denoted by C. This 

quantity is normally proportional to the size and distribution of cells in the graph. Since the 

segmentation map ignores the empty cells, they are ignored. As a result, the overall computational 

complexity is for the algorithm O(n) + O(3dC). The optimal scenario will lead to a total cost of 

O(n) + O (1), since all the input points are contained within a single cell. Conversely, in the worst-

case scenario, each entry point is isolated to a cell odd, resulting in a total number of cells equal to 

the number of points [21]. Here, the total cost becomes O(n) + O(3dn), where d represents the 

dimensionality of the data set and 3d signifies the number of cells within a neighborhood. From 

this analysis, it is evident that Lin-DBSCAN enhances the execution complexity more effectively 

than DBSCAN and other proposed algorithms. 

The Lin-DBSCAN algorithm represents a significant advancement in data clustering 

techniques, particularly when compared to the standard DBSCAN algorithm and its various 

derivatives. The original DBSCAN algorithm, with a computational complexity of O(n2), was 

improved upon by several iterations like FDBSCAN [4], IDBSCAN [6], HDBSCAN [8], TI-
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DBSCAN [16], and Grid-DBSCAN. These adaptations primarily aimed at accelerating the 

execution time, achieving a process complexity of at best O (n log n). 

Lin-DBSCAN, however, introduces a more efficient approach. It operates by initially 

iterating through each data point in the set once, for the purpose of constructing and populating a 

grid. The algorithm assigns each data point to a specific cell in the grid, creating an index for each 

cell and checking against a hash map to identify if the cell is already populated. This operation 

bears a computational cost of O(n), with ’n’ representing the total number of data points. The 

efficiency here is attributed to the hash map, which ensures a constant average access cost for each 

cell. 

The collection phase of Lin-DBSCAN is even more efficient. Each cell in the grid is 

accessed only once, with the computational effort correlating to the count of non-empty cells, 

denoted as ’C’. This count generally depends on the grid’s size and the distribution of cells. 

Importantly, empty cells are disregarded in this process. Consequently, the overall computational 

complexity of Lin-DBSCAN is O(n) + O (3d × C), where ’d’ is the dimensionality of the dataset 

and 3d indicates the number of neighboring cells. 

The best-case scenario for Lin-DBSCAN is when all input points fall within a single cell, 

yielding a total cost of O(n) + O (1). In contrast, the worst-case scenario is when every data point 

is isolated in its own cell, leading to a complexity of O(n) + O (3d ×n). This analysis clearly 

demonstrates that Lin-DBSCAN significantly improves upon the execution complexity, 

outperforming DBSCAN and other related algorithms in efficiency. 

 

Conclusion 

   The paper discussed the implementation of Lin-DBSCAN-CFAR processor as a method 

to reduce variance in background level estimation in K-distributed sea clutter, particularly in multi-

target environments. Lin- DBSCAN clustering technology was employed to eliminate outliers, 

such as sea spikes and interference targets, from the reference window. The background level of 

the clutter was then calculated using the remaining reference cells. The detection threshold was set 

by comparing it to the CUT, determined by the product of the threshold factor and the background 

clutter level. Simulations showed that the Lin-DBSCAN-CFAR processor surpassed other CFAR 

processors in various metrics, including false alarm probabilities, target counts, and shape 

parameters.  

  Additionally, it was found to have lower computational complexity and cost compared to 

DBSCAN-CFAR. These findings highlight the Lin-DBSCAN-CFAR’s efficiency and 

effectiveness, making it a valuable tool for addressing background level estimation and target 

discrimination in multi-target scenarios. The results also provide a solid base for future research 

in optimizing and expanding the Lin-DBSCAN-CFAR approach for various applications 

requiring robust data analysis and classification. 
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